Step |
Hyp |
Ref |
Expression |
0 |
|
cmfs |
|- mFS |
1 |
|
vt |
|- t |
2 |
|
cmcn |
|- mCN |
3 |
1
|
cv |
|- t |
4 |
3 2
|
cfv |
|- ( mCN ` t ) |
5 |
|
cmvar |
|- mVR |
6 |
3 5
|
cfv |
|- ( mVR ` t ) |
7 |
4 6
|
cin |
|- ( ( mCN ` t ) i^i ( mVR ` t ) ) |
8 |
|
c0 |
|- (/) |
9 |
7 8
|
wceq |
|- ( ( mCN ` t ) i^i ( mVR ` t ) ) = (/) |
10 |
|
cmty |
|- mType |
11 |
3 10
|
cfv |
|- ( mType ` t ) |
12 |
|
cmtc |
|- mTC |
13 |
3 12
|
cfv |
|- ( mTC ` t ) |
14 |
6 13 11
|
wf |
|- ( mType ` t ) : ( mVR ` t ) --> ( mTC ` t ) |
15 |
9 14
|
wa |
|- ( ( ( mCN ` t ) i^i ( mVR ` t ) ) = (/) /\ ( mType ` t ) : ( mVR ` t ) --> ( mTC ` t ) ) |
16 |
|
cmax |
|- mAx |
17 |
3 16
|
cfv |
|- ( mAx ` t ) |
18 |
|
cmsta |
|- mStat |
19 |
3 18
|
cfv |
|- ( mStat ` t ) |
20 |
17 19
|
wss |
|- ( mAx ` t ) C_ ( mStat ` t ) |
21 |
|
vv |
|- v |
22 |
|
cmvt |
|- mVT |
23 |
3 22
|
cfv |
|- ( mVT ` t ) |
24 |
11
|
ccnv |
|- `' ( mType ` t ) |
25 |
21
|
cv |
|- v |
26 |
25
|
csn |
|- { v } |
27 |
24 26
|
cima |
|- ( `' ( mType ` t ) " { v } ) |
28 |
|
cfn |
|- Fin |
29 |
27 28
|
wcel |
|- ( `' ( mType ` t ) " { v } ) e. Fin |
30 |
29
|
wn |
|- -. ( `' ( mType ` t ) " { v } ) e. Fin |
31 |
30 21 23
|
wral |
|- A. v e. ( mVT ` t ) -. ( `' ( mType ` t ) " { v } ) e. Fin |
32 |
20 31
|
wa |
|- ( ( mAx ` t ) C_ ( mStat ` t ) /\ A. v e. ( mVT ` t ) -. ( `' ( mType ` t ) " { v } ) e. Fin ) |
33 |
15 32
|
wa |
|- ( ( ( ( mCN ` t ) i^i ( mVR ` t ) ) = (/) /\ ( mType ` t ) : ( mVR ` t ) --> ( mTC ` t ) ) /\ ( ( mAx ` t ) C_ ( mStat ` t ) /\ A. v e. ( mVT ` t ) -. ( `' ( mType ` t ) " { v } ) e. Fin ) ) |
34 |
33 1
|
cab |
|- { t | ( ( ( ( mCN ` t ) i^i ( mVR ` t ) ) = (/) /\ ( mType ` t ) : ( mVR ` t ) --> ( mTC ` t ) ) /\ ( ( mAx ` t ) C_ ( mStat ` t ) /\ A. v e. ( mVT ` t ) -. ( `' ( mType ` t ) " { v } ) e. Fin ) ) } |
35 |
0 34
|
wceq |
|- mFS = { t | ( ( ( ( mCN ` t ) i^i ( mVR ` t ) ) = (/) /\ ( mType ` t ) : ( mVR ` t ) --> ( mTC ` t ) ) /\ ( ( mAx ` t ) C_ ( mStat ` t ) /\ A. v e. ( mVT ` t ) -. ( `' ( mType ` t ) " { v } ) e. Fin ) ) } |