| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmcls |
|- mCls |
| 1 |
|
vt |
|- t |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vd |
|- d |
| 4 |
|
cmdv |
|- mDV |
| 5 |
1
|
cv |
|- t |
| 6 |
5 4
|
cfv |
|- ( mDV ` t ) |
| 7 |
6
|
cpw |
|- ~P ( mDV ` t ) |
| 8 |
|
vh |
|- h |
| 9 |
|
cmex |
|- mEx |
| 10 |
5 9
|
cfv |
|- ( mEx ` t ) |
| 11 |
10
|
cpw |
|- ~P ( mEx ` t ) |
| 12 |
|
vc |
|- c |
| 13 |
8
|
cv |
|- h |
| 14 |
|
cmvh |
|- mVH |
| 15 |
5 14
|
cfv |
|- ( mVH ` t ) |
| 16 |
15
|
crn |
|- ran ( mVH ` t ) |
| 17 |
13 16
|
cun |
|- ( h u. ran ( mVH ` t ) ) |
| 18 |
12
|
cv |
|- c |
| 19 |
17 18
|
wss |
|- ( h u. ran ( mVH ` t ) ) C_ c |
| 20 |
|
vm |
|- m |
| 21 |
|
vo |
|- o |
| 22 |
|
vp |
|- p |
| 23 |
20
|
cv |
|- m |
| 24 |
21
|
cv |
|- o |
| 25 |
22
|
cv |
|- p |
| 26 |
23 24 25
|
cotp |
|- <. m , o , p >. |
| 27 |
|
cmax |
|- mAx |
| 28 |
5 27
|
cfv |
|- ( mAx ` t ) |
| 29 |
26 28
|
wcel |
|- <. m , o , p >. e. ( mAx ` t ) |
| 30 |
|
vs |
|- s |
| 31 |
|
cmsub |
|- mSubst |
| 32 |
5 31
|
cfv |
|- ( mSubst ` t ) |
| 33 |
32
|
crn |
|- ran ( mSubst ` t ) |
| 34 |
30
|
cv |
|- s |
| 35 |
24 16
|
cun |
|- ( o u. ran ( mVH ` t ) ) |
| 36 |
34 35
|
cima |
|- ( s " ( o u. ran ( mVH ` t ) ) ) |
| 37 |
36 18
|
wss |
|- ( s " ( o u. ran ( mVH ` t ) ) ) C_ c |
| 38 |
|
vx |
|- x |
| 39 |
|
vy |
|- y |
| 40 |
38
|
cv |
|- x |
| 41 |
39
|
cv |
|- y |
| 42 |
40 41 23
|
wbr |
|- x m y |
| 43 |
|
cmvrs |
|- mVars |
| 44 |
5 43
|
cfv |
|- ( mVars ` t ) |
| 45 |
40 15
|
cfv |
|- ( ( mVH ` t ) ` x ) |
| 46 |
45 34
|
cfv |
|- ( s ` ( ( mVH ` t ) ` x ) ) |
| 47 |
46 44
|
cfv |
|- ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) |
| 48 |
41 15
|
cfv |
|- ( ( mVH ` t ) ` y ) |
| 49 |
48 34
|
cfv |
|- ( s ` ( ( mVH ` t ) ` y ) ) |
| 50 |
49 44
|
cfv |
|- ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) |
| 51 |
47 50
|
cxp |
|- ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) |
| 52 |
3
|
cv |
|- d |
| 53 |
51 52
|
wss |
|- ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d |
| 54 |
42 53
|
wi |
|- ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) |
| 55 |
54 39
|
wal |
|- A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) |
| 56 |
55 38
|
wal |
|- A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) |
| 57 |
37 56
|
wa |
|- ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) |
| 58 |
25 34
|
cfv |
|- ( s ` p ) |
| 59 |
58 18
|
wcel |
|- ( s ` p ) e. c |
| 60 |
57 59
|
wi |
|- ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) |
| 61 |
60 30 33
|
wral |
|- A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) |
| 62 |
29 61
|
wi |
|- ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) |
| 63 |
62 22
|
wal |
|- A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) |
| 64 |
63 21
|
wal |
|- A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) |
| 65 |
64 20
|
wal |
|- A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) |
| 66 |
19 65
|
wa |
|- ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) |
| 67 |
66 12
|
cab |
|- { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } |
| 68 |
67
|
cint |
|- |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } |
| 69 |
3 8 7 11 68
|
cmpo |
|- ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) |
| 70 |
1 2 69
|
cmpt |
|- ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) ) |
| 71 |
0 70
|
wceq |
|- mCls = ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) ) |