Step |
Hyp |
Ref |
Expression |
0 |
|
cmcls |
|- mCls |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
vd |
|- d |
4 |
|
cmdv |
|- mDV |
5 |
1
|
cv |
|- t |
6 |
5 4
|
cfv |
|- ( mDV ` t ) |
7 |
6
|
cpw |
|- ~P ( mDV ` t ) |
8 |
|
vh |
|- h |
9 |
|
cmex |
|- mEx |
10 |
5 9
|
cfv |
|- ( mEx ` t ) |
11 |
10
|
cpw |
|- ~P ( mEx ` t ) |
12 |
|
vc |
|- c |
13 |
8
|
cv |
|- h |
14 |
|
cmvh |
|- mVH |
15 |
5 14
|
cfv |
|- ( mVH ` t ) |
16 |
15
|
crn |
|- ran ( mVH ` t ) |
17 |
13 16
|
cun |
|- ( h u. ran ( mVH ` t ) ) |
18 |
12
|
cv |
|- c |
19 |
17 18
|
wss |
|- ( h u. ran ( mVH ` t ) ) C_ c |
20 |
|
vm |
|- m |
21 |
|
vo |
|- o |
22 |
|
vp |
|- p |
23 |
20
|
cv |
|- m |
24 |
21
|
cv |
|- o |
25 |
22
|
cv |
|- p |
26 |
23 24 25
|
cotp |
|- <. m , o , p >. |
27 |
|
cmax |
|- mAx |
28 |
5 27
|
cfv |
|- ( mAx ` t ) |
29 |
26 28
|
wcel |
|- <. m , o , p >. e. ( mAx ` t ) |
30 |
|
vs |
|- s |
31 |
|
cmsub |
|- mSubst |
32 |
5 31
|
cfv |
|- ( mSubst ` t ) |
33 |
32
|
crn |
|- ran ( mSubst ` t ) |
34 |
30
|
cv |
|- s |
35 |
24 16
|
cun |
|- ( o u. ran ( mVH ` t ) ) |
36 |
34 35
|
cima |
|- ( s " ( o u. ran ( mVH ` t ) ) ) |
37 |
36 18
|
wss |
|- ( s " ( o u. ran ( mVH ` t ) ) ) C_ c |
38 |
|
vx |
|- x |
39 |
|
vy |
|- y |
40 |
38
|
cv |
|- x |
41 |
39
|
cv |
|- y |
42 |
40 41 23
|
wbr |
|- x m y |
43 |
|
cmvrs |
|- mVars |
44 |
5 43
|
cfv |
|- ( mVars ` t ) |
45 |
40 15
|
cfv |
|- ( ( mVH ` t ) ` x ) |
46 |
45 34
|
cfv |
|- ( s ` ( ( mVH ` t ) ` x ) ) |
47 |
46 44
|
cfv |
|- ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) |
48 |
41 15
|
cfv |
|- ( ( mVH ` t ) ` y ) |
49 |
48 34
|
cfv |
|- ( s ` ( ( mVH ` t ) ` y ) ) |
50 |
49 44
|
cfv |
|- ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) |
51 |
47 50
|
cxp |
|- ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) |
52 |
3
|
cv |
|- d |
53 |
51 52
|
wss |
|- ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d |
54 |
42 53
|
wi |
|- ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) |
55 |
54 39
|
wal |
|- A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) |
56 |
55 38
|
wal |
|- A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) |
57 |
37 56
|
wa |
|- ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) |
58 |
25 34
|
cfv |
|- ( s ` p ) |
59 |
58 18
|
wcel |
|- ( s ` p ) e. c |
60 |
57 59
|
wi |
|- ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) |
61 |
60 30 33
|
wral |
|- A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) |
62 |
29 61
|
wi |
|- ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) |
63 |
62 22
|
wal |
|- A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) |
64 |
63 21
|
wal |
|- A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) |
65 |
64 20
|
wal |
|- A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) |
66 |
19 65
|
wa |
|- ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) |
67 |
66 12
|
cab |
|- { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } |
68 |
67
|
cint |
|- |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } |
69 |
3 8 7 11 68
|
cmpo |
|- ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) |
70 |
1 2 69
|
cmpt |
|- ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) ) |
71 |
0 70
|
wceq |
|- mCls = ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) ) |