Metamath Proof Explorer


Definition df-mcls

Description: Define the closure of a set of statements relative to a set of disjointness constraints. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mcls
|- mCls = ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmcls
 |-  mCls
1 vt
 |-  t
2 cvv
 |-  _V
3 vd
 |-  d
4 cmdv
 |-  mDV
5 1 cv
 |-  t
6 5 4 cfv
 |-  ( mDV ` t )
7 6 cpw
 |-  ~P ( mDV ` t )
8 vh
 |-  h
9 cmex
 |-  mEx
10 5 9 cfv
 |-  ( mEx ` t )
11 10 cpw
 |-  ~P ( mEx ` t )
12 vc
 |-  c
13 8 cv
 |-  h
14 cmvh
 |-  mVH
15 5 14 cfv
 |-  ( mVH ` t )
16 15 crn
 |-  ran ( mVH ` t )
17 13 16 cun
 |-  ( h u. ran ( mVH ` t ) )
18 12 cv
 |-  c
19 17 18 wss
 |-  ( h u. ran ( mVH ` t ) ) C_ c
20 vm
 |-  m
21 vo
 |-  o
22 vp
 |-  p
23 20 cv
 |-  m
24 21 cv
 |-  o
25 22 cv
 |-  p
26 23 24 25 cotp
 |-  <. m , o , p >.
27 cmax
 |-  mAx
28 5 27 cfv
 |-  ( mAx ` t )
29 26 28 wcel
 |-  <. m , o , p >. e. ( mAx ` t )
30 vs
 |-  s
31 cmsub
 |-  mSubst
32 5 31 cfv
 |-  ( mSubst ` t )
33 32 crn
 |-  ran ( mSubst ` t )
34 30 cv
 |-  s
35 24 16 cun
 |-  ( o u. ran ( mVH ` t ) )
36 34 35 cima
 |-  ( s " ( o u. ran ( mVH ` t ) ) )
37 36 18 wss
 |-  ( s " ( o u. ran ( mVH ` t ) ) ) C_ c
38 vx
 |-  x
39 vy
 |-  y
40 38 cv
 |-  x
41 39 cv
 |-  y
42 40 41 23 wbr
 |-  x m y
43 cmvrs
 |-  mVars
44 5 43 cfv
 |-  ( mVars ` t )
45 40 15 cfv
 |-  ( ( mVH ` t ) ` x )
46 45 34 cfv
 |-  ( s ` ( ( mVH ` t ) ` x ) )
47 46 44 cfv
 |-  ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) )
48 41 15 cfv
 |-  ( ( mVH ` t ) ` y )
49 48 34 cfv
 |-  ( s ` ( ( mVH ` t ) ` y ) )
50 49 44 cfv
 |-  ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) )
51 47 50 cxp
 |-  ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) )
52 3 cv
 |-  d
53 51 52 wss
 |-  ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d
54 42 53 wi
 |-  ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d )
55 54 39 wal
 |-  A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d )
56 55 38 wal
 |-  A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d )
57 37 56 wa
 |-  ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) )
58 25 34 cfv
 |-  ( s ` p )
59 58 18 wcel
 |-  ( s ` p ) e. c
60 57 59 wi
 |-  ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c )
61 60 30 33 wral
 |-  A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c )
62 29 61 wi
 |-  ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) )
63 62 22 wal
 |-  A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) )
64 63 21 wal
 |-  A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) )
65 64 20 wal
 |-  A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) )
66 19 65 wa
 |-  ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) )
67 66 12 cab
 |-  { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) }
68 67 cint
 |-  |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) }
69 3 8 7 11 68 cmpo
 |-  ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } )
70 1 2 69 cmpt
 |-  ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) )
71 0 70 wceq
 |-  mCls = ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) )