Step |
Hyp |
Ref |
Expression |
0 |
|
cmcls |
⊢ mCls |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
vd |
⊢ 𝑑 |
4 |
|
cmdv |
⊢ mDV |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mDV ‘ 𝑡 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( mDV ‘ 𝑡 ) |
8 |
|
vh |
⊢ ℎ |
9 |
|
cmex |
⊢ mEx |
10 |
5 9
|
cfv |
⊢ ( mEx ‘ 𝑡 ) |
11 |
10
|
cpw |
⊢ 𝒫 ( mEx ‘ 𝑡 ) |
12 |
|
vc |
⊢ 𝑐 |
13 |
8
|
cv |
⊢ ℎ |
14 |
|
cmvh |
⊢ mVH |
15 |
5 14
|
cfv |
⊢ ( mVH ‘ 𝑡 ) |
16 |
15
|
crn |
⊢ ran ( mVH ‘ 𝑡 ) |
17 |
13 16
|
cun |
⊢ ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) |
18 |
12
|
cv |
⊢ 𝑐 |
19 |
17 18
|
wss |
⊢ ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 |
20 |
|
vm |
⊢ 𝑚 |
21 |
|
vo |
⊢ 𝑜 |
22 |
|
vp |
⊢ 𝑝 |
23 |
20
|
cv |
⊢ 𝑚 |
24 |
21
|
cv |
⊢ 𝑜 |
25 |
22
|
cv |
⊢ 𝑝 |
26 |
23 24 25
|
cotp |
⊢ 〈 𝑚 , 𝑜 , 𝑝 〉 |
27 |
|
cmax |
⊢ mAx |
28 |
5 27
|
cfv |
⊢ ( mAx ‘ 𝑡 ) |
29 |
26 28
|
wcel |
⊢ 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) |
30 |
|
vs |
⊢ 𝑠 |
31 |
|
cmsub |
⊢ mSubst |
32 |
5 31
|
cfv |
⊢ ( mSubst ‘ 𝑡 ) |
33 |
32
|
crn |
⊢ ran ( mSubst ‘ 𝑡 ) |
34 |
30
|
cv |
⊢ 𝑠 |
35 |
24 16
|
cun |
⊢ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) |
36 |
34 35
|
cima |
⊢ ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) |
37 |
36 18
|
wss |
⊢ ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 |
38 |
|
vx |
⊢ 𝑥 |
39 |
|
vy |
⊢ 𝑦 |
40 |
38
|
cv |
⊢ 𝑥 |
41 |
39
|
cv |
⊢ 𝑦 |
42 |
40 41 23
|
wbr |
⊢ 𝑥 𝑚 𝑦 |
43 |
|
cmvrs |
⊢ mVars |
44 |
5 43
|
cfv |
⊢ ( mVars ‘ 𝑡 ) |
45 |
40 15
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) |
46 |
45 34
|
cfv |
⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) |
47 |
46 44
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
48 |
41 15
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) |
49 |
48 34
|
cfv |
⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) |
50 |
49 44
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) |
51 |
47 50
|
cxp |
⊢ ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) |
52 |
3
|
cv |
⊢ 𝑑 |
53 |
51 52
|
wss |
⊢ ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 |
54 |
42 53
|
wi |
⊢ ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) |
55 |
54 39
|
wal |
⊢ ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) |
56 |
55 38
|
wal |
⊢ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) |
57 |
37 56
|
wa |
⊢ ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) |
58 |
25 34
|
cfv |
⊢ ( 𝑠 ‘ 𝑝 ) |
59 |
58 18
|
wcel |
⊢ ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 |
60 |
57 59
|
wi |
⊢ ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) |
61 |
60 30 33
|
wral |
⊢ ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) |
62 |
29 61
|
wi |
⊢ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) |
63 |
62 22
|
wal |
⊢ ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) |
64 |
63 21
|
wal |
⊢ ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) |
65 |
64 20
|
wal |
⊢ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) |
66 |
19 65
|
wa |
⊢ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) |
67 |
66 12
|
cab |
⊢ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } |
68 |
67
|
cint |
⊢ ∩ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } |
69 |
3 8 7 11 68
|
cmpo |
⊢ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ℎ ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ ∩ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ) |
70 |
1 2 69
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ℎ ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ ∩ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ) ) |
71 |
0 70
|
wceq |
⊢ mCls = ( 𝑡 ∈ V ↦ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ℎ ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ ∩ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ) ) |