| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmcls |
⊢ mCls |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vd |
⊢ 𝑑 |
| 4 |
|
cmdv |
⊢ mDV |
| 5 |
1
|
cv |
⊢ 𝑡 |
| 6 |
5 4
|
cfv |
⊢ ( mDV ‘ 𝑡 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( mDV ‘ 𝑡 ) |
| 8 |
|
vh |
⊢ ℎ |
| 9 |
|
cmex |
⊢ mEx |
| 10 |
5 9
|
cfv |
⊢ ( mEx ‘ 𝑡 ) |
| 11 |
10
|
cpw |
⊢ 𝒫 ( mEx ‘ 𝑡 ) |
| 12 |
|
vc |
⊢ 𝑐 |
| 13 |
8
|
cv |
⊢ ℎ |
| 14 |
|
cmvh |
⊢ mVH |
| 15 |
5 14
|
cfv |
⊢ ( mVH ‘ 𝑡 ) |
| 16 |
15
|
crn |
⊢ ran ( mVH ‘ 𝑡 ) |
| 17 |
13 16
|
cun |
⊢ ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) |
| 18 |
12
|
cv |
⊢ 𝑐 |
| 19 |
17 18
|
wss |
⊢ ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 |
| 20 |
|
vm |
⊢ 𝑚 |
| 21 |
|
vo |
⊢ 𝑜 |
| 22 |
|
vp |
⊢ 𝑝 |
| 23 |
20
|
cv |
⊢ 𝑚 |
| 24 |
21
|
cv |
⊢ 𝑜 |
| 25 |
22
|
cv |
⊢ 𝑝 |
| 26 |
23 24 25
|
cotp |
⊢ 〈 𝑚 , 𝑜 , 𝑝 〉 |
| 27 |
|
cmax |
⊢ mAx |
| 28 |
5 27
|
cfv |
⊢ ( mAx ‘ 𝑡 ) |
| 29 |
26 28
|
wcel |
⊢ 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) |
| 30 |
|
vs |
⊢ 𝑠 |
| 31 |
|
cmsub |
⊢ mSubst |
| 32 |
5 31
|
cfv |
⊢ ( mSubst ‘ 𝑡 ) |
| 33 |
32
|
crn |
⊢ ran ( mSubst ‘ 𝑡 ) |
| 34 |
30
|
cv |
⊢ 𝑠 |
| 35 |
24 16
|
cun |
⊢ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) |
| 36 |
34 35
|
cima |
⊢ ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) |
| 37 |
36 18
|
wss |
⊢ ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 |
| 38 |
|
vx |
⊢ 𝑥 |
| 39 |
|
vy |
⊢ 𝑦 |
| 40 |
38
|
cv |
⊢ 𝑥 |
| 41 |
39
|
cv |
⊢ 𝑦 |
| 42 |
40 41 23
|
wbr |
⊢ 𝑥 𝑚 𝑦 |
| 43 |
|
cmvrs |
⊢ mVars |
| 44 |
5 43
|
cfv |
⊢ ( mVars ‘ 𝑡 ) |
| 45 |
40 15
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) |
| 46 |
45 34
|
cfv |
⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) |
| 47 |
46 44
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
| 48 |
41 15
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) |
| 49 |
48 34
|
cfv |
⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) |
| 50 |
49 44
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) |
| 51 |
47 50
|
cxp |
⊢ ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) |
| 52 |
3
|
cv |
⊢ 𝑑 |
| 53 |
51 52
|
wss |
⊢ ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 |
| 54 |
42 53
|
wi |
⊢ ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) |
| 55 |
54 39
|
wal |
⊢ ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) |
| 56 |
55 38
|
wal |
⊢ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) |
| 57 |
37 56
|
wa |
⊢ ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) |
| 58 |
25 34
|
cfv |
⊢ ( 𝑠 ‘ 𝑝 ) |
| 59 |
58 18
|
wcel |
⊢ ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 |
| 60 |
57 59
|
wi |
⊢ ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) |
| 61 |
60 30 33
|
wral |
⊢ ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) |
| 62 |
29 61
|
wi |
⊢ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) |
| 63 |
62 22
|
wal |
⊢ ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) |
| 64 |
63 21
|
wal |
⊢ ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) |
| 65 |
64 20
|
wal |
⊢ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) |
| 66 |
19 65
|
wa |
⊢ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) |
| 67 |
66 12
|
cab |
⊢ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } |
| 68 |
67
|
cint |
⊢ ∩ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } |
| 69 |
3 8 7 11 68
|
cmpo |
⊢ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ℎ ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ ∩ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ) |
| 70 |
1 2 69
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ℎ ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ ∩ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ) ) |
| 71 |
0 70
|
wceq |
⊢ mCls = ( 𝑡 ∈ V ↦ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ℎ ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ ∩ { 𝑐 ∣ ( ( ℎ ∪ ran ( mVH ‘ 𝑡 ) ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran ( mVH ‘ 𝑡 ) ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ) ) |