| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmvmul |
⊢ maVecMul |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vo |
⊢ 𝑜 |
| 4 |
|
c1st |
⊢ 1st |
| 5 |
3
|
cv |
⊢ 𝑜 |
| 6 |
5 4
|
cfv |
⊢ ( 1st ‘ 𝑜 ) |
| 7 |
|
vm |
⊢ 𝑚 |
| 8 |
|
c2nd |
⊢ 2nd |
| 9 |
5 8
|
cfv |
⊢ ( 2nd ‘ 𝑜 ) |
| 10 |
|
vn |
⊢ 𝑛 |
| 11 |
|
vx |
⊢ 𝑥 |
| 12 |
|
cbs |
⊢ Base |
| 13 |
1
|
cv |
⊢ 𝑟 |
| 14 |
13 12
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 15 |
|
cmap |
⊢ ↑m |
| 16 |
7
|
cv |
⊢ 𝑚 |
| 17 |
10
|
cv |
⊢ 𝑛 |
| 18 |
16 17
|
cxp |
⊢ ( 𝑚 × 𝑛 ) |
| 19 |
14 18 15
|
co |
⊢ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) |
| 20 |
|
vy |
⊢ 𝑦 |
| 21 |
14 17 15
|
co |
⊢ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) |
| 22 |
|
vi |
⊢ 𝑖 |
| 23 |
|
cgsu |
⊢ Σg |
| 24 |
|
vj |
⊢ 𝑗 |
| 25 |
22
|
cv |
⊢ 𝑖 |
| 26 |
11
|
cv |
⊢ 𝑥 |
| 27 |
24
|
cv |
⊢ 𝑗 |
| 28 |
25 27 26
|
co |
⊢ ( 𝑖 𝑥 𝑗 ) |
| 29 |
|
cmulr |
⊢ .r |
| 30 |
13 29
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
| 31 |
20
|
cv |
⊢ 𝑦 |
| 32 |
27 31
|
cfv |
⊢ ( 𝑦 ‘ 𝑗 ) |
| 33 |
28 32 30
|
co |
⊢ ( ( 𝑖 𝑥 𝑗 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑗 ) ) |
| 34 |
24 17 33
|
cmpt |
⊢ ( 𝑗 ∈ 𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑗 ) ) ) |
| 35 |
13 34 23
|
co |
⊢ ( 𝑟 Σg ( 𝑗 ∈ 𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑗 ) ) ) ) |
| 36 |
22 16 35
|
cmpt |
⊢ ( 𝑖 ∈ 𝑚 ↦ ( 𝑟 Σg ( 𝑗 ∈ 𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑗 ) ) ) ) ) |
| 37 |
11 20 19 21 36
|
cmpo |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖 ∈ 𝑚 ↦ ( 𝑟 Σg ( 𝑗 ∈ 𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑗 ) ) ) ) ) ) |
| 38 |
10 9 37
|
csb |
⊢ ⦋ ( 2nd ‘ 𝑜 ) / 𝑛 ⦌ ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖 ∈ 𝑚 ↦ ( 𝑟 Σg ( 𝑗 ∈ 𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑗 ) ) ) ) ) ) |
| 39 |
7 6 38
|
csb |
⊢ ⦋ ( 1st ‘ 𝑜 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑜 ) / 𝑛 ⦌ ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖 ∈ 𝑚 ↦ ( 𝑟 Σg ( 𝑗 ∈ 𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑗 ) ) ) ) ) ) |
| 40 |
1 3 2 2 39
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑜 ∈ V ↦ ⦋ ( 1st ‘ 𝑜 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑜 ) / 𝑛 ⦌ ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖 ∈ 𝑚 ↦ ( 𝑟 Σg ( 𝑗 ∈ 𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑗 ) ) ) ) ) ) ) |
| 41 |
0 40
|
wceq |
⊢ maVecMul = ( 𝑟 ∈ V , 𝑜 ∈ V ↦ ⦋ ( 1st ‘ 𝑜 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑜 ) / 𝑛 ⦌ ( 𝑥 ∈ ( ( Base ‘ 𝑟 ) ↑m ( 𝑚 × 𝑛 ) ) , 𝑦 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑖 ∈ 𝑚 ↦ ( 𝑟 Σg ( 𝑗 ∈ 𝑛 ↦ ( ( 𝑖 𝑥 𝑗 ) ( .r ‘ 𝑟 ) ( 𝑦 ‘ 𝑗 ) ) ) ) ) ) ) |