Metamath Proof Explorer


Definition df-mvmul

Description: The operator which multiplies an M x N -matrix with an N-dimensional vector. (Contributed by AV, 23-Feb-2019)

Ref Expression
Assertion df-mvmul maVecMul = r V , o V 1 st o / m 2 nd o / n x Base r m × n , y Base r n i m r j n i x j r y j

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvmul class maVecMul
1 vr setvar r
2 cvv class V
3 vo setvar o
4 c1st class 1 st
5 3 cv setvar o
6 5 4 cfv class 1 st o
7 vm setvar m
8 c2nd class 2 nd
9 5 8 cfv class 2 nd o
10 vn setvar n
11 vx setvar x
12 cbs class Base
13 1 cv setvar r
14 13 12 cfv class Base r
15 cmap class 𝑚
16 7 cv setvar m
17 10 cv setvar n
18 16 17 cxp class m × n
19 14 18 15 co class Base r m × n
20 vy setvar y
21 14 17 15 co class Base r n
22 vi setvar i
23 cgsu class Σ𝑔
24 vj setvar j
25 22 cv setvar i
26 11 cv setvar x
27 24 cv setvar j
28 25 27 26 co class i x j
29 cmulr class 𝑟
30 13 29 cfv class r
31 20 cv setvar y
32 27 31 cfv class y j
33 28 32 30 co class i x j r y j
34 24 17 33 cmpt class j n i x j r y j
35 13 34 23 co class r j n i x j r y j
36 22 16 35 cmpt class i m r j n i x j r y j
37 11 20 19 21 36 cmpo class x Base r m × n , y Base r n i m r j n i x j r y j
38 10 9 37 csb class 2 nd o / n x Base r m × n , y Base r n i m r j n i x j r y j
39 7 6 38 csb class 1 st o / m 2 nd o / n x Base r m × n , y Base r n i m r j n i x j r y j
40 1 3 2 2 39 cmpo class r V , o V 1 st o / m 2 nd o / n x Base r m × n , y Base r n i m r j n i x j r y j
41 0 40 wceq wff maVecMul = r V , o V 1 st o / m 2 nd o / n x Base r m × n , y Base r n i m r j n i x j r y j