| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvmulfval.x |
|
| 2 |
|
mvmulfval.b |
|
| 3 |
|
mvmulfval.t |
|
| 4 |
|
mvmulfval.r |
|
| 5 |
|
mvmulfval.m |
|
| 6 |
|
mvmulfval.n |
|
| 7 |
|
df-mvmul |
|
| 8 |
7
|
a1i |
|
| 9 |
|
fvex |
|
| 10 |
|
fvex |
|
| 11 |
|
xpeq12 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
adantl |
|
| 15 |
|
simpl |
|
| 16 |
|
simpr |
|
| 17 |
16
|
mpteq1d |
|
| 18 |
17
|
oveq2d |
|
| 19 |
15 18
|
mpteq12dv |
|
| 20 |
12 14 19
|
mpoeq123dv |
|
| 21 |
9 10 20
|
csbie2 |
|
| 22 |
|
simprl |
|
| 23 |
22
|
fveq2d |
|
| 24 |
23 2
|
eqtr4di |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
ad2antll |
|
| 27 |
|
op1stg |
|
| 28 |
5 6 27
|
syl2anc |
|
| 29 |
28
|
adantr |
|
| 30 |
26 29
|
eqtrd |
|
| 31 |
|
fveq2 |
|
| 32 |
31
|
ad2antll |
|
| 33 |
|
op2ndg |
|
| 34 |
5 6 33
|
syl2anc |
|
| 35 |
34
|
adantr |
|
| 36 |
32 35
|
eqtrd |
|
| 37 |
30 36
|
xpeq12d |
|
| 38 |
24 37
|
oveq12d |
|
| 39 |
24 36
|
oveq12d |
|
| 40 |
|
fveq2 |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
adantl |
|
| 43 |
42 3
|
eqtr4di |
|
| 44 |
43
|
oveqd |
|
| 45 |
36 44
|
mpteq12dv |
|
| 46 |
22 45
|
oveq12d |
|
| 47 |
30 46
|
mpteq12dv |
|
| 48 |
38 39 47
|
mpoeq123dv |
|
| 49 |
21 48
|
eqtrid |
|
| 50 |
4
|
elexd |
|
| 51 |
|
opex |
|
| 52 |
51
|
a1i |
|
| 53 |
|
ovex |
|
| 54 |
|
ovex |
|
| 55 |
53 54
|
mpoex |
|
| 56 |
55
|
a1i |
|
| 57 |
8 49 50 52 56
|
ovmpod |
|
| 58 |
1 57
|
eqtrid |
|