Metamath Proof Explorer


Definition df-mwgfs

Description: Define the set of weakly grammatical formal systems. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mwgfs mWGFS = { 𝑡 ∈ mFS ∣ ∀ 𝑑𝑎 ( ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmwgfs mWGFS
1 vt 𝑡
2 cmfs mFS
3 vd 𝑑
4 vh
5 va 𝑎
6 3 cv 𝑑
7 4 cv
8 5 cv 𝑎
9 6 7 8 cotp 𝑑 , , 𝑎
10 cmax mAx
11 1 cv 𝑡
12 11 10 cfv ( mAx ‘ 𝑡 )
13 9 12 wcel 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 )
14 c1st 1st
15 8 14 cfv ( 1st𝑎 )
16 cmvt mVT
17 11 16 cfv ( mVT ‘ 𝑡 )
18 15 17 wcel ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 )
19 13 18 wa ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) )
20 vs 𝑠
21 cmsub mSubst
22 11 21 cfv ( mSubst ‘ 𝑡 )
23 22 crn ran ( mSubst ‘ 𝑡 )
24 20 cv 𝑠
25 cmsa mSA
26 11 25 cfv ( mSA ‘ 𝑡 )
27 24 26 cima ( 𝑠 “ ( mSA ‘ 𝑡 ) )
28 8 27 wcel 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) )
29 28 20 23 wrex 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) )
30 19 29 wi ( ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) )
31 30 5 wal 𝑎 ( ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) )
32 31 4 wal 𝑎 ( ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) )
33 32 3 wal 𝑑𝑎 ( ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) )
34 33 1 2 crab { 𝑡 ∈ mFS ∣ ∀ 𝑑𝑎 ( ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) ) }
35 0 34 wceq mWGFS = { 𝑡 ∈ mFS ∣ ∀ 𝑑𝑎 ( ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) ) }