Step |
Hyp |
Ref |
Expression |
0 |
|
cmwgfs |
⊢ mWGFS |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cmfs |
⊢ mFS |
3 |
|
vd |
⊢ 𝑑 |
4 |
|
vh |
⊢ ℎ |
5 |
|
va |
⊢ 𝑎 |
6 |
3
|
cv |
⊢ 𝑑 |
7 |
4
|
cv |
⊢ ℎ |
8 |
5
|
cv |
⊢ 𝑎 |
9 |
6 7 8
|
cotp |
⊢ 〈 𝑑 , ℎ , 𝑎 〉 |
10 |
|
cmax |
⊢ mAx |
11 |
1
|
cv |
⊢ 𝑡 |
12 |
11 10
|
cfv |
⊢ ( mAx ‘ 𝑡 ) |
13 |
9 12
|
wcel |
⊢ 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) |
14 |
|
c1st |
⊢ 1st |
15 |
8 14
|
cfv |
⊢ ( 1st ‘ 𝑎 ) |
16 |
|
cmvt |
⊢ mVT |
17 |
11 16
|
cfv |
⊢ ( mVT ‘ 𝑡 ) |
18 |
15 17
|
wcel |
⊢ ( 1st ‘ 𝑎 ) ∈ ( mVT ‘ 𝑡 ) |
19 |
13 18
|
wa |
⊢ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) |
20 |
|
vs |
⊢ 𝑠 |
21 |
|
cmsub |
⊢ mSubst |
22 |
11 21
|
cfv |
⊢ ( mSubst ‘ 𝑡 ) |
23 |
22
|
crn |
⊢ ran ( mSubst ‘ 𝑡 ) |
24 |
20
|
cv |
⊢ 𝑠 |
25 |
|
cmsa |
⊢ mSA |
26 |
11 25
|
cfv |
⊢ ( mSA ‘ 𝑡 ) |
27 |
24 26
|
cima |
⊢ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) |
28 |
8 27
|
wcel |
⊢ 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) |
29 |
28 20 23
|
wrex |
⊢ ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) |
30 |
19 29
|
wi |
⊢ ( ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) ) |
31 |
30 5
|
wal |
⊢ ∀ 𝑎 ( ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) ) |
32 |
31 4
|
wal |
⊢ ∀ ℎ ∀ 𝑎 ( ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) ) |
33 |
32 3
|
wal |
⊢ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) ) |
34 |
33 1 2
|
crab |
⊢ { 𝑡 ∈ mFS ∣ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) ) } |
35 |
0 34
|
wceq |
⊢ mWGFS = { 𝑡 ∈ mFS ∣ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( mVT ‘ 𝑡 ) ) → ∃ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) 𝑎 ∈ ( 𝑠 “ ( mSA ‘ 𝑡 ) ) ) } |