Step |
Hyp |
Ref |
Expression |
0 |
|
cmwgfs |
|- mWGFS |
1 |
|
vt |
|- t |
2 |
|
cmfs |
|- mFS |
3 |
|
vd |
|- d |
4 |
|
vh |
|- h |
5 |
|
va |
|- a |
6 |
3
|
cv |
|- d |
7 |
4
|
cv |
|- h |
8 |
5
|
cv |
|- a |
9 |
6 7 8
|
cotp |
|- <. d , h , a >. |
10 |
|
cmax |
|- mAx |
11 |
1
|
cv |
|- t |
12 |
11 10
|
cfv |
|- ( mAx ` t ) |
13 |
9 12
|
wcel |
|- <. d , h , a >. e. ( mAx ` t ) |
14 |
|
c1st |
|- 1st |
15 |
8 14
|
cfv |
|- ( 1st ` a ) |
16 |
|
cmvt |
|- mVT |
17 |
11 16
|
cfv |
|- ( mVT ` t ) |
18 |
15 17
|
wcel |
|- ( 1st ` a ) e. ( mVT ` t ) |
19 |
13 18
|
wa |
|- ( <. d , h , a >. e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) ) |
20 |
|
vs |
|- s |
21 |
|
cmsub |
|- mSubst |
22 |
11 21
|
cfv |
|- ( mSubst ` t ) |
23 |
22
|
crn |
|- ran ( mSubst ` t ) |
24 |
20
|
cv |
|- s |
25 |
|
cmsa |
|- mSA |
26 |
11 25
|
cfv |
|- ( mSA ` t ) |
27 |
24 26
|
cima |
|- ( s " ( mSA ` t ) ) |
28 |
8 27
|
wcel |
|- a e. ( s " ( mSA ` t ) ) |
29 |
28 20 23
|
wrex |
|- E. s e. ran ( mSubst ` t ) a e. ( s " ( mSA ` t ) ) |
30 |
19 29
|
wi |
|- ( ( <. d , h , a >. e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) ) -> E. s e. ran ( mSubst ` t ) a e. ( s " ( mSA ` t ) ) ) |
31 |
30 5
|
wal |
|- A. a ( ( <. d , h , a >. e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) ) -> E. s e. ran ( mSubst ` t ) a e. ( s " ( mSA ` t ) ) ) |
32 |
31 4
|
wal |
|- A. h A. a ( ( <. d , h , a >. e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) ) -> E. s e. ran ( mSubst ` t ) a e. ( s " ( mSA ` t ) ) ) |
33 |
32 3
|
wal |
|- A. d A. h A. a ( ( <. d , h , a >. e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) ) -> E. s e. ran ( mSubst ` t ) a e. ( s " ( mSA ` t ) ) ) |
34 |
33 1 2
|
crab |
|- { t e. mFS | A. d A. h A. a ( ( <. d , h , a >. e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) ) -> E. s e. ran ( mSubst ` t ) a e. ( s " ( mSA ` t ) ) ) } |
35 |
0 34
|
wceq |
|- mWGFS = { t e. mFS | A. d A. h A. a ( ( <. d , h , a >. e. ( mAx ` t ) /\ ( 1st ` a ) e. ( mVT ` t ) ) -> E. s e. ran ( mSubst ` t ) a e. ( s " ( mSA ` t ) ) ) } |