Metamath Proof Explorer


Definition df-nrm

Description: Define normal spaces. A space is normal if disjoint closed sets can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion df-nrm Nrm = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnrm Nrm
1 vj 𝑗
2 ctop Top
3 vx 𝑥
4 1 cv 𝑗
5 vy 𝑦
6 ccld Clsd
7 4 6 cfv ( Clsd ‘ 𝑗 )
8 3 cv 𝑥
9 8 cpw 𝒫 𝑥
10 7 9 cin ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 )
11 vz 𝑧
12 5 cv 𝑦
13 11 cv 𝑧
14 12 13 wss 𝑦𝑧
15 ccl cls
16 4 15 cfv ( cls ‘ 𝑗 )
17 13 16 cfv ( ( cls ‘ 𝑗 ) ‘ 𝑧 )
18 17 8 wss ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥
19 14 18 wa ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 )
20 19 11 4 wrex 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 )
21 20 5 10 wral 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 )
22 21 3 4 wral 𝑥𝑗𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 )
23 22 1 2 crab { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) }
24 0 23 wceq Nrm = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) }