| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cnrm |
|- Nrm |
| 1 |
|
vj |
|- j |
| 2 |
|
ctop |
|- Top |
| 3 |
|
vx |
|- x |
| 4 |
1
|
cv |
|- j |
| 5 |
|
vy |
|- y |
| 6 |
|
ccld |
|- Clsd |
| 7 |
4 6
|
cfv |
|- ( Clsd ` j ) |
| 8 |
3
|
cv |
|- x |
| 9 |
8
|
cpw |
|- ~P x |
| 10 |
7 9
|
cin |
|- ( ( Clsd ` j ) i^i ~P x ) |
| 11 |
|
vz |
|- z |
| 12 |
5
|
cv |
|- y |
| 13 |
11
|
cv |
|- z |
| 14 |
12 13
|
wss |
|- y C_ z |
| 15 |
|
ccl |
|- cls |
| 16 |
4 15
|
cfv |
|- ( cls ` j ) |
| 17 |
13 16
|
cfv |
|- ( ( cls ` j ) ` z ) |
| 18 |
17 8
|
wss |
|- ( ( cls ` j ) ` z ) C_ x |
| 19 |
14 18
|
wa |
|- ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 20 |
19 11 4
|
wrex |
|- E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 21 |
20 5 10
|
wral |
|- A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 22 |
21 3 4
|
wral |
|- A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 23 |
22 1 2
|
crab |
|- { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } |
| 24 |
0 23
|
wceq |
|- Nrm = { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } |