| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cnsg |
⊢ NrmSGrp |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cgrp |
⊢ Grp |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
csubg |
⊢ SubGrp |
| 5 |
1
|
cv |
⊢ 𝑤 |
| 6 |
5 4
|
cfv |
⊢ ( SubGrp ‘ 𝑤 ) |
| 7 |
|
cbs |
⊢ Base |
| 8 |
5 7
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 9 |
|
vb |
⊢ 𝑏 |
| 10 |
|
cplusg |
⊢ +g |
| 11 |
5 10
|
cfv |
⊢ ( +g ‘ 𝑤 ) |
| 12 |
|
vp |
⊢ 𝑝 |
| 13 |
|
vx |
⊢ 𝑥 |
| 14 |
9
|
cv |
⊢ 𝑏 |
| 15 |
|
vy |
⊢ 𝑦 |
| 16 |
13
|
cv |
⊢ 𝑥 |
| 17 |
12
|
cv |
⊢ 𝑝 |
| 18 |
15
|
cv |
⊢ 𝑦 |
| 19 |
16 18 17
|
co |
⊢ ( 𝑥 𝑝 𝑦 ) |
| 20 |
3
|
cv |
⊢ 𝑠 |
| 21 |
19 20
|
wcel |
⊢ ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 |
| 22 |
18 16 17
|
co |
⊢ ( 𝑦 𝑝 𝑥 ) |
| 23 |
22 20
|
wcel |
⊢ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 |
| 24 |
21 23
|
wb |
⊢ ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 25 |
24 15 14
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 26 |
25 13 14
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 27 |
26 12 11
|
wsbc |
⊢ [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 28 |
27 9 8
|
wsbc |
⊢ [ ( Base ‘ 𝑤 ) / 𝑏 ] [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) |
| 29 |
28 3 6
|
crab |
⊢ { 𝑠 ∈ ( SubGrp ‘ 𝑤 ) ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) } |
| 30 |
1 2 29
|
cmpt |
⊢ ( 𝑤 ∈ Grp ↦ { 𝑠 ∈ ( SubGrp ‘ 𝑤 ) ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) } ) |
| 31 |
0 30
|
wceq |
⊢ NrmSGrp = ( 𝑤 ∈ Grp ↦ { 𝑠 ∈ ( SubGrp ‘ 𝑤 ) ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] [ ( +g ‘ 𝑤 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) } ) |