Description: Define the equivalence relation in a quotient ring or quotient group (where i is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nsg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnsg | |
|
1 | vw | |
|
2 | cgrp | |
|
3 | vs | |
|
4 | csubg | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | cbs | |
|
8 | 5 7 | cfv | |
9 | vb | |
|
10 | cplusg | |
|
11 | 5 10 | cfv | |
12 | vp | |
|
13 | vx | |
|
14 | 9 | cv | |
15 | vy | |
|
16 | 13 | cv | |
17 | 12 | cv | |
18 | 15 | cv | |
19 | 16 18 17 | co | |
20 | 3 | cv | |
21 | 19 20 | wcel | |
22 | 18 16 17 | co | |
23 | 22 20 | wcel | |
24 | 21 23 | wb | |
25 | 24 15 14 | wral | |
26 | 25 13 14 | wral | |
27 | 26 12 11 | wsbc | |
28 | 27 9 8 | wsbc | |
29 | 28 3 6 | crab | |
30 | 1 2 29 | cmpt | |
31 | 0 30 | wceq | |