Metamath Proof Explorer


Definition df-nsg

Description: Define the equivalence relation in a quotient ring or quotient group (where i is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Assertion df-nsg NrmSGrp=wGrpsSubGrpw|[˙Basew/b]˙[˙+w/p]˙xbybxpysypxs

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnsg classNrmSGrp
1 vw setvarw
2 cgrp classGrp
3 vs setvars
4 csubg classSubGrp
5 1 cv setvarw
6 5 4 cfv classSubGrpw
7 cbs classBase
8 5 7 cfv classBasew
9 vb setvarb
10 cplusg class+𝑔
11 5 10 cfv class+w
12 vp setvarp
13 vx setvarx
14 9 cv setvarb
15 vy setvary
16 13 cv setvarx
17 12 cv setvarp
18 15 cv setvary
19 16 18 17 co classxpy
20 3 cv setvars
21 19 20 wcel wffxpys
22 18 16 17 co classypx
23 22 20 wcel wffypxs
24 21 23 wb wffxpysypxs
25 24 15 14 wral wffybxpysypxs
26 25 13 14 wral wffxbybxpysypxs
27 26 12 11 wsbc wff[˙+w/p]˙xbybxpysypxs
28 27 9 8 wsbc wff[˙Basew/b]˙[˙+w/p]˙xbybxpysypxs
29 28 3 6 crab classsSubGrpw|[˙Basew/b]˙[˙+w/p]˙xbybxpysypxs
30 1 2 29 cmpt classwGrpsSubGrpw|[˙Basew/b]˙[˙+w/p]˙xbybxpysypxs
31 0 30 wceq wffNrmSGrp=wGrpsSubGrpw|[˙Basew/b]˙[˙+w/p]˙xbybxpysypxs