| Step | Hyp | Ref | Expression | 
						
							| 0 |  | come | ⊢ OutMeas | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 | 1 | cv | ⊢ 𝑥 | 
						
							| 3 | 2 | cdm | ⊢ dom  𝑥 | 
						
							| 4 |  | cc0 | ⊢ 0 | 
						
							| 5 |  | cicc | ⊢ [,] | 
						
							| 6 |  | cpnf | ⊢ +∞ | 
						
							| 7 | 4 6 5 | co | ⊢ ( 0 [,] +∞ ) | 
						
							| 8 | 3 7 2 | wf | ⊢ 𝑥 : dom  𝑥 ⟶ ( 0 [,] +∞ ) | 
						
							| 9 | 3 | cuni | ⊢ ∪  dom  𝑥 | 
						
							| 10 | 9 | cpw | ⊢ 𝒫  ∪  dom  𝑥 | 
						
							| 11 | 3 10 | wceq | ⊢ dom  𝑥  =  𝒫  ∪  dom  𝑥 | 
						
							| 12 | 8 11 | wa | ⊢ ( 𝑥 : dom  𝑥 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑥  =  𝒫  ∪  dom  𝑥 ) | 
						
							| 13 |  | c0 | ⊢ ∅ | 
						
							| 14 | 13 2 | cfv | ⊢ ( 𝑥 ‘ ∅ ) | 
						
							| 15 | 14 4 | wceq | ⊢ ( 𝑥 ‘ ∅ )  =  0 | 
						
							| 16 | 12 15 | wa | ⊢ ( ( 𝑥 : dom  𝑥 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑥  =  𝒫  ∪  dom  𝑥 )  ∧  ( 𝑥 ‘ ∅ )  =  0 ) | 
						
							| 17 |  | vy | ⊢ 𝑦 | 
						
							| 18 |  | vz | ⊢ 𝑧 | 
						
							| 19 | 17 | cv | ⊢ 𝑦 | 
						
							| 20 | 19 | cpw | ⊢ 𝒫  𝑦 | 
						
							| 21 | 18 | cv | ⊢ 𝑧 | 
						
							| 22 | 21 2 | cfv | ⊢ ( 𝑥 ‘ 𝑧 ) | 
						
							| 23 |  | cle | ⊢  ≤ | 
						
							| 24 | 19 2 | cfv | ⊢ ( 𝑥 ‘ 𝑦 ) | 
						
							| 25 | 22 24 23 | wbr | ⊢ ( 𝑥 ‘ 𝑧 )  ≤  ( 𝑥 ‘ 𝑦 ) | 
						
							| 26 | 25 18 20 | wral | ⊢ ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑥 ‘ 𝑧 )  ≤  ( 𝑥 ‘ 𝑦 ) | 
						
							| 27 | 26 17 10 | wral | ⊢ ∀ 𝑦  ∈  𝒫  ∪  dom  𝑥 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑥 ‘ 𝑧 )  ≤  ( 𝑥 ‘ 𝑦 ) | 
						
							| 28 | 16 27 | wa | ⊢ ( ( ( 𝑥 : dom  𝑥 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑥  =  𝒫  ∪  dom  𝑥 )  ∧  ( 𝑥 ‘ ∅ )  =  0 )  ∧  ∀ 𝑦  ∈  𝒫  ∪  dom  𝑥 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑥 ‘ 𝑧 )  ≤  ( 𝑥 ‘ 𝑦 ) ) | 
						
							| 29 | 3 | cpw | ⊢ 𝒫  dom  𝑥 | 
						
							| 30 |  | cdom | ⊢  ≼ | 
						
							| 31 |  | com | ⊢ ω | 
						
							| 32 | 19 31 30 | wbr | ⊢ 𝑦  ≼  ω | 
						
							| 33 | 19 | cuni | ⊢ ∪  𝑦 | 
						
							| 34 | 33 2 | cfv | ⊢ ( 𝑥 ‘ ∪  𝑦 ) | 
						
							| 35 |  | csumge0 | ⊢ Σ^ | 
						
							| 36 | 2 19 | cres | ⊢ ( 𝑥  ↾  𝑦 ) | 
						
							| 37 | 36 35 | cfv | ⊢ ( Σ^ ‘ ( 𝑥  ↾  𝑦 ) ) | 
						
							| 38 | 34 37 23 | wbr | ⊢ ( 𝑥 ‘ ∪  𝑦 )  ≤  ( Σ^ ‘ ( 𝑥  ↾  𝑦 ) ) | 
						
							| 39 | 32 38 | wi | ⊢ ( 𝑦  ≼  ω  →  ( 𝑥 ‘ ∪  𝑦 )  ≤  ( Σ^ ‘ ( 𝑥  ↾  𝑦 ) ) ) | 
						
							| 40 | 39 17 29 | wral | ⊢ ∀ 𝑦  ∈  𝒫  dom  𝑥 ( 𝑦  ≼  ω  →  ( 𝑥 ‘ ∪  𝑦 )  ≤  ( Σ^ ‘ ( 𝑥  ↾  𝑦 ) ) ) | 
						
							| 41 | 28 40 | wa | ⊢ ( ( ( ( 𝑥 : dom  𝑥 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑥  =  𝒫  ∪  dom  𝑥 )  ∧  ( 𝑥 ‘ ∅ )  =  0 )  ∧  ∀ 𝑦  ∈  𝒫  ∪  dom  𝑥 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑥 ‘ 𝑧 )  ≤  ( 𝑥 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝒫  dom  𝑥 ( 𝑦  ≼  ω  →  ( 𝑥 ‘ ∪  𝑦 )  ≤  ( Σ^ ‘ ( 𝑥  ↾  𝑦 ) ) ) ) | 
						
							| 42 | 41 1 | cab | ⊢ { 𝑥  ∣  ( ( ( ( 𝑥 : dom  𝑥 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑥  =  𝒫  ∪  dom  𝑥 )  ∧  ( 𝑥 ‘ ∅ )  =  0 )  ∧  ∀ 𝑦  ∈  𝒫  ∪  dom  𝑥 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑥 ‘ 𝑧 )  ≤  ( 𝑥 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝒫  dom  𝑥 ( 𝑦  ≼  ω  →  ( 𝑥 ‘ ∪  𝑦 )  ≤  ( Σ^ ‘ ( 𝑥  ↾  𝑦 ) ) ) ) } | 
						
							| 43 | 0 42 | wceq | ⊢ OutMeas  =  { 𝑥  ∣  ( ( ( ( 𝑥 : dom  𝑥 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑥  =  𝒫  ∪  dom  𝑥 )  ∧  ( 𝑥 ‘ ∅ )  =  0 )  ∧  ∀ 𝑦  ∈  𝒫  ∪  dom  𝑥 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑥 ‘ 𝑧 )  ≤  ( 𝑥 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝒫  dom  𝑥 ( 𝑦  ≼  ω  →  ( 𝑥 ‘ ∪  𝑦 )  ≤  ( Σ^ ‘ ( 𝑥  ↾  𝑦 ) ) ) ) } |