Metamath Proof Explorer


Definition df-ome

Description: Define the class of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion df-ome OutMeas = { 𝑥 ∣ ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦 ( 𝑥𝑧 ) ≤ ( 𝑥𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥𝑦 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 come OutMeas
1 vx 𝑥
2 1 cv 𝑥
3 2 cdm dom 𝑥
4 cc0 0
5 cicc [,]
6 cpnf +∞
7 4 6 5 co ( 0 [,] +∞ )
8 3 7 2 wf 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ )
9 3 cuni dom 𝑥
10 9 cpw 𝒫 dom 𝑥
11 3 10 wceq dom 𝑥 = 𝒫 dom 𝑥
12 8 11 wa ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 dom 𝑥 )
13 c0
14 13 2 cfv ( 𝑥 ‘ ∅ )
15 14 4 wceq ( 𝑥 ‘ ∅ ) = 0
16 12 15 wa ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 )
17 vy 𝑦
18 vz 𝑧
19 17 cv 𝑦
20 19 cpw 𝒫 𝑦
21 18 cv 𝑧
22 21 2 cfv ( 𝑥𝑧 )
23 cle
24 19 2 cfv ( 𝑥𝑦 )
25 22 24 23 wbr ( 𝑥𝑧 ) ≤ ( 𝑥𝑦 )
26 25 18 20 wral 𝑧 ∈ 𝒫 𝑦 ( 𝑥𝑧 ) ≤ ( 𝑥𝑦 )
27 26 17 10 wral 𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦 ( 𝑥𝑧 ) ≤ ( 𝑥𝑦 )
28 16 27 wa ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦 ( 𝑥𝑧 ) ≤ ( 𝑥𝑦 ) )
29 3 cpw 𝒫 dom 𝑥
30 cdom
31 com ω
32 19 31 30 wbr 𝑦 ≼ ω
33 19 cuni 𝑦
34 33 2 cfv ( 𝑥 𝑦 )
35 csumge0 Σ^
36 2 19 cres ( 𝑥𝑦 )
37 36 35 cfv ( Σ^ ‘ ( 𝑥𝑦 ) )
38 34 37 23 wbr ( 𝑥 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥𝑦 ) )
39 32 38 wi ( 𝑦 ≼ ω → ( 𝑥 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥𝑦 ) ) )
40 39 17 29 wral 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥𝑦 ) ) )
41 28 40 wa ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦 ( 𝑥𝑧 ) ≤ ( 𝑥𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥𝑦 ) ) ) )
42 41 1 cab { 𝑥 ∣ ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦 ( 𝑥𝑧 ) ≤ ( 𝑥𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥𝑦 ) ) ) ) }
43 0 42 wceq OutMeas = { 𝑥 ∣ ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦 ( 𝑥𝑧 ) ≤ ( 𝑥𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥𝑦 ) ) ) ) }