Step |
Hyp |
Ref |
Expression |
0 |
|
come |
⊢ OutMeas |
1 |
|
vx |
⊢ 𝑥 |
2 |
1
|
cv |
⊢ 𝑥 |
3 |
2
|
cdm |
⊢ dom 𝑥 |
4 |
|
cc0 |
⊢ 0 |
5 |
|
cicc |
⊢ [,] |
6 |
|
cpnf |
⊢ +∞ |
7 |
4 6 5
|
co |
⊢ ( 0 [,] +∞ ) |
8 |
3 7 2
|
wf |
⊢ 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) |
9 |
3
|
cuni |
⊢ ∪ dom 𝑥 |
10 |
9
|
cpw |
⊢ 𝒫 ∪ dom 𝑥 |
11 |
3 10
|
wceq |
⊢ dom 𝑥 = 𝒫 ∪ dom 𝑥 |
12 |
8 11
|
wa |
⊢ ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) |
13 |
|
c0 |
⊢ ∅ |
14 |
13 2
|
cfv |
⊢ ( 𝑥 ‘ ∅ ) |
15 |
14 4
|
wceq |
⊢ ( 𝑥 ‘ ∅ ) = 0 |
16 |
12 15
|
wa |
⊢ ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) |
17 |
|
vy |
⊢ 𝑦 |
18 |
|
vz |
⊢ 𝑧 |
19 |
17
|
cv |
⊢ 𝑦 |
20 |
19
|
cpw |
⊢ 𝒫 𝑦 |
21 |
18
|
cv |
⊢ 𝑧 |
22 |
21 2
|
cfv |
⊢ ( 𝑥 ‘ 𝑧 ) |
23 |
|
cle |
⊢ ≤ |
24 |
19 2
|
cfv |
⊢ ( 𝑥 ‘ 𝑦 ) |
25 |
22 24 23
|
wbr |
⊢ ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) |
26 |
25 18 20
|
wral |
⊢ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) |
27 |
26 17 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑥 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) |
28 |
16 27
|
wa |
⊢ ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑥 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ) |
29 |
3
|
cpw |
⊢ 𝒫 dom 𝑥 |
30 |
|
cdom |
⊢ ≼ |
31 |
|
com |
⊢ ω |
32 |
19 31 30
|
wbr |
⊢ 𝑦 ≼ ω |
33 |
19
|
cuni |
⊢ ∪ 𝑦 |
34 |
33 2
|
cfv |
⊢ ( 𝑥 ‘ ∪ 𝑦 ) |
35 |
|
csumge0 |
⊢ Σ^ |
36 |
2 19
|
cres |
⊢ ( 𝑥 ↾ 𝑦 ) |
37 |
36 35
|
cfv |
⊢ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) |
38 |
34 37 23
|
wbr |
⊢ ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) |
39 |
32 38
|
wi |
⊢ ( 𝑦 ≼ ω → ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) |
40 |
39 17 29
|
wral |
⊢ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) |
41 |
28 40
|
wa |
⊢ ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑥 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ) |
42 |
41 1
|
cab |
⊢ { 𝑥 ∣ ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑥 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ) } |
43 |
0 42
|
wceq |
⊢ OutMeas = { 𝑥 ∣ ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑥 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ) } |