Step |
Hyp |
Ref |
Expression |
0 |
|
coms |
⊢ toOMeas |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
va |
⊢ 𝑎 |
4 |
1
|
cv |
⊢ 𝑟 |
5 |
4
|
cdm |
⊢ dom 𝑟 |
6 |
5
|
cuni |
⊢ ∪ dom 𝑟 |
7 |
6
|
cpw |
⊢ 𝒫 ∪ dom 𝑟 |
8 |
|
vx |
⊢ 𝑥 |
9 |
|
vz |
⊢ 𝑧 |
10 |
5
|
cpw |
⊢ 𝒫 dom 𝑟 |
11 |
3
|
cv |
⊢ 𝑎 |
12 |
9
|
cv |
⊢ 𝑧 |
13 |
12
|
cuni |
⊢ ∪ 𝑧 |
14 |
11 13
|
wss |
⊢ 𝑎 ⊆ ∪ 𝑧 |
15 |
|
cdom |
⊢ ≼ |
16 |
|
com |
⊢ ω |
17 |
12 16 15
|
wbr |
⊢ 𝑧 ≼ ω |
18 |
14 17
|
wa |
⊢ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) |
19 |
18 9 10
|
crab |
⊢ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } |
20 |
|
vy |
⊢ 𝑦 |
21 |
8
|
cv |
⊢ 𝑥 |
22 |
20
|
cv |
⊢ 𝑦 |
23 |
22 4
|
cfv |
⊢ ( 𝑟 ‘ 𝑦 ) |
24 |
21 23 20
|
cesum |
⊢ Σ* 𝑦 ∈ 𝑥 ( 𝑟 ‘ 𝑦 ) |
25 |
8 19 24
|
cmpt |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑟 ‘ 𝑦 ) ) |
26 |
25
|
crn |
⊢ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑟 ‘ 𝑦 ) ) |
27 |
|
cc0 |
⊢ 0 |
28 |
|
cicc |
⊢ [,] |
29 |
|
cpnf |
⊢ +∞ |
30 |
27 29 28
|
co |
⊢ ( 0 [,] +∞ ) |
31 |
|
clt |
⊢ < |
32 |
26 30 31
|
cinf |
⊢ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑟 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) |
33 |
3 7 32
|
cmpt |
⊢ ( 𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑟 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |
34 |
1 2 33
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ( 𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑟 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) ) |
35 |
0 34
|
wceq |
⊢ toOMeas = ( 𝑟 ∈ V ↦ ( 𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑟 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) ) |