Metamath Proof Explorer


Definition df-oms

Description: Define a function constructing an outer measure. See omsval for its value. Definition 1.5 of Bogachev p. 16. (Contributed by Thierry Arnoux, 15-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Assertion df-oms toOMeas = ( 𝑟 ∈ V ↦ ( 𝑎 ∈ 𝒫 dom 𝑟 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑟𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 coms toOMeas
1 vr 𝑟
2 cvv V
3 va 𝑎
4 1 cv 𝑟
5 4 cdm dom 𝑟
6 5 cuni dom 𝑟
7 6 cpw 𝒫 dom 𝑟
8 vx 𝑥
9 vz 𝑧
10 5 cpw 𝒫 dom 𝑟
11 3 cv 𝑎
12 9 cv 𝑧
13 12 cuni 𝑧
14 11 13 wss 𝑎 𝑧
15 cdom
16 com ω
17 12 16 15 wbr 𝑧 ≼ ω
18 14 17 wa ( 𝑎 𝑧𝑧 ≼ ω )
19 18 9 10 crab { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) }
20 vy 𝑦
21 8 cv 𝑥
22 20 cv 𝑦
23 22 4 cfv ( 𝑟𝑦 )
24 21 23 20 cesum Σ* 𝑦𝑥 ( 𝑟𝑦 )
25 8 19 24 cmpt ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑟𝑦 ) )
26 25 crn ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑟𝑦 ) )
27 cc0 0
28 cicc [,]
29 cpnf +∞
30 27 29 28 co ( 0 [,] +∞ )
31 clt <
32 26 30 31 cinf inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑟𝑦 ) ) , ( 0 [,] +∞ ) , < )
33 3 7 32 cmpt ( 𝑎 ∈ 𝒫 dom 𝑟 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑟𝑦 ) ) , ( 0 [,] +∞ ) , < ) )
34 1 2 33 cmpt ( 𝑟 ∈ V ↦ ( 𝑎 ∈ 𝒫 dom 𝑟 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑟𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) )
35 0 34 wceq toOMeas = ( 𝑟 ∈ V ↦ ( 𝑎 ∈ 𝒫 dom 𝑟 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑟 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑟𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) )