| Step | Hyp | Ref | Expression | 
						
							| 0 |  | coms | ⊢ toOMeas | 
						
							| 1 |  | vr | ⊢ 𝑟 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 | 1 | cv | ⊢ 𝑟 | 
						
							| 5 | 4 | cdm | ⊢ dom  𝑟 | 
						
							| 6 | 5 | cuni | ⊢ ∪  dom  𝑟 | 
						
							| 7 | 6 | cpw | ⊢ 𝒫  ∪  dom  𝑟 | 
						
							| 8 |  | vx | ⊢ 𝑥 | 
						
							| 9 |  | vz | ⊢ 𝑧 | 
						
							| 10 | 5 | cpw | ⊢ 𝒫  dom  𝑟 | 
						
							| 11 | 3 | cv | ⊢ 𝑎 | 
						
							| 12 | 9 | cv | ⊢ 𝑧 | 
						
							| 13 | 12 | cuni | ⊢ ∪  𝑧 | 
						
							| 14 | 11 13 | wss | ⊢ 𝑎  ⊆  ∪  𝑧 | 
						
							| 15 |  | cdom | ⊢  ≼ | 
						
							| 16 |  | com | ⊢ ω | 
						
							| 17 | 12 16 15 | wbr | ⊢ 𝑧  ≼  ω | 
						
							| 18 | 14 17 | wa | ⊢ ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) | 
						
							| 19 | 18 9 10 | crab | ⊢ { 𝑧  ∈  𝒫  dom  𝑟  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } | 
						
							| 20 |  | vy | ⊢ 𝑦 | 
						
							| 21 | 8 | cv | ⊢ 𝑥 | 
						
							| 22 | 20 | cv | ⊢ 𝑦 | 
						
							| 23 | 22 4 | cfv | ⊢ ( 𝑟 ‘ 𝑦 ) | 
						
							| 24 | 21 23 20 | cesum | ⊢ Σ* 𝑦  ∈  𝑥 ( 𝑟 ‘ 𝑦 ) | 
						
							| 25 | 8 19 24 | cmpt | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑟  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑟 ‘ 𝑦 ) ) | 
						
							| 26 | 25 | crn | ⊢ ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑟  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑟 ‘ 𝑦 ) ) | 
						
							| 27 |  | cc0 | ⊢ 0 | 
						
							| 28 |  | cicc | ⊢ [,] | 
						
							| 29 |  | cpnf | ⊢ +∞ | 
						
							| 30 | 27 29 28 | co | ⊢ ( 0 [,] +∞ ) | 
						
							| 31 |  | clt | ⊢  < | 
						
							| 32 | 26 30 31 | cinf | ⊢ inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑟  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑟 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) | 
						
							| 33 | 3 7 32 | cmpt | ⊢ ( 𝑎  ∈  𝒫  ∪  dom  𝑟  ↦  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑟  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑟 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 34 | 1 2 33 | cmpt | ⊢ ( 𝑟  ∈  V  ↦  ( 𝑎  ∈  𝒫  ∪  dom  𝑟  ↦  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑟  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑟 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) ) | 
						
							| 35 | 0 34 | wceq | ⊢ toOMeas  =  ( 𝑟  ∈  V  ↦  ( 𝑎  ∈  𝒫  ∪  dom  𝑟  ↦  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑟  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑟 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) ) |