| Step |
Hyp |
Ref |
Expression |
| 0 |
|
coms |
|- toOMeas |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
va |
|- a |
| 4 |
1
|
cv |
|- r |
| 5 |
4
|
cdm |
|- dom r |
| 6 |
5
|
cuni |
|- U. dom r |
| 7 |
6
|
cpw |
|- ~P U. dom r |
| 8 |
|
vx |
|- x |
| 9 |
|
vz |
|- z |
| 10 |
5
|
cpw |
|- ~P dom r |
| 11 |
3
|
cv |
|- a |
| 12 |
9
|
cv |
|- z |
| 13 |
12
|
cuni |
|- U. z |
| 14 |
11 13
|
wss |
|- a C_ U. z |
| 15 |
|
cdom |
|- ~<_ |
| 16 |
|
com |
|- _om |
| 17 |
12 16 15
|
wbr |
|- z ~<_ _om |
| 18 |
14 17
|
wa |
|- ( a C_ U. z /\ z ~<_ _om ) |
| 19 |
18 9 10
|
crab |
|- { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |
| 20 |
|
vy |
|- y |
| 21 |
8
|
cv |
|- x |
| 22 |
20
|
cv |
|- y |
| 23 |
22 4
|
cfv |
|- ( r ` y ) |
| 24 |
21 23 20
|
cesum |
|- sum* y e. x ( r ` y ) |
| 25 |
8 19 24
|
cmpt |
|- ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) |
| 26 |
25
|
crn |
|- ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) |
| 27 |
|
cc0 |
|- 0 |
| 28 |
|
cicc |
|- [,] |
| 29 |
|
cpnf |
|- +oo |
| 30 |
27 29 28
|
co |
|- ( 0 [,] +oo ) |
| 31 |
|
clt |
|- < |
| 32 |
26 30 31
|
cinf |
|- inf ( ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) , ( 0 [,] +oo ) , < ) |
| 33 |
3 7 32
|
cmpt |
|- ( a e. ~P U. dom r |-> inf ( ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) , ( 0 [,] +oo ) , < ) ) |
| 34 |
1 2 33
|
cmpt |
|- ( r e. _V |-> ( a e. ~P U. dom r |-> inf ( ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) , ( 0 [,] +oo ) , < ) ) ) |
| 35 |
0 34
|
wceq |
|- toOMeas = ( r e. _V |-> ( a e. ~P U. dom r |-> inf ( ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) , ( 0 [,] +oo ) , < ) ) ) |