| Step | Hyp | Ref | Expression | 
						
							| 0 |  | coms |  |-  toOMeas | 
						
							| 1 |  | vr |  |-  r | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | va |  |-  a | 
						
							| 4 | 1 | cv |  |-  r | 
						
							| 5 | 4 | cdm |  |-  dom r | 
						
							| 6 | 5 | cuni |  |-  U. dom r | 
						
							| 7 | 6 | cpw |  |-  ~P U. dom r | 
						
							| 8 |  | vx |  |-  x | 
						
							| 9 |  | vz |  |-  z | 
						
							| 10 | 5 | cpw |  |-  ~P dom r | 
						
							| 11 | 3 | cv |  |-  a | 
						
							| 12 | 9 | cv |  |-  z | 
						
							| 13 | 12 | cuni |  |-  U. z | 
						
							| 14 | 11 13 | wss |  |-  a C_ U. z | 
						
							| 15 |  | cdom |  |-  ~<_ | 
						
							| 16 |  | com |  |-  _om | 
						
							| 17 | 12 16 15 | wbr |  |-  z ~<_ _om | 
						
							| 18 | 14 17 | wa |  |-  ( a C_ U. z /\ z ~<_ _om ) | 
						
							| 19 | 18 9 10 | crab |  |-  { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } | 
						
							| 20 |  | vy |  |-  y | 
						
							| 21 | 8 | cv |  |-  x | 
						
							| 22 | 20 | cv |  |-  y | 
						
							| 23 | 22 4 | cfv |  |-  ( r ` y ) | 
						
							| 24 | 21 23 20 | cesum |  |-  sum* y e. x ( r ` y ) | 
						
							| 25 | 8 19 24 | cmpt |  |-  ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) | 
						
							| 26 | 25 | crn |  |-  ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) | 
						
							| 27 |  | cc0 |  |-  0 | 
						
							| 28 |  | cicc |  |-  [,] | 
						
							| 29 |  | cpnf |  |-  +oo | 
						
							| 30 | 27 29 28 | co |  |-  ( 0 [,] +oo ) | 
						
							| 31 |  | clt |  |-  < | 
						
							| 32 | 26 30 31 | cinf |  |-  inf ( ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) , ( 0 [,] +oo ) , < ) | 
						
							| 33 | 3 7 32 | cmpt |  |-  ( a e. ~P U. dom r |-> inf ( ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) , ( 0 [,] +oo ) , < ) ) | 
						
							| 34 | 1 2 33 | cmpt |  |-  ( r e. _V |-> ( a e. ~P U. dom r |-> inf ( ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) , ( 0 [,] +oo ) , < ) ) ) | 
						
							| 35 | 0 34 | wceq |  |-  toOMeas = ( r e. _V |-> ( a e. ~P U. dom r |-> inf ( ran ( x e. { z e. ~P dom r | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( r ` y ) ) , ( 0 [,] +oo ) , < ) ) ) |