| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cqpa |
⊢ _Qp |
| 1 |
|
vp |
⊢ 𝑝 |
| 2 |
|
cprime |
⊢ ℙ |
| 3 |
|
cqp |
⊢ Qp |
| 4 |
1
|
cv |
⊢ 𝑝 |
| 5 |
4 3
|
cfv |
⊢ ( Qp ‘ 𝑝 ) |
| 6 |
|
vr |
⊢ 𝑟 |
| 7 |
6
|
cv |
⊢ 𝑟 |
| 8 |
|
cpsl |
⊢ polySplitLim |
| 9 |
|
vn |
⊢ 𝑛 |
| 10 |
|
cn |
⊢ ℕ |
| 11 |
|
vf |
⊢ 𝑓 |
| 12 |
|
cpl1 |
⊢ Poly1 |
| 13 |
7 12
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
| 14 |
|
cdg1 |
⊢ deg1 |
| 15 |
11
|
cv |
⊢ 𝑓 |
| 16 |
7 15 14
|
co |
⊢ ( 𝑟 deg1 𝑓 ) |
| 17 |
|
cle |
⊢ ≤ |
| 18 |
9
|
cv |
⊢ 𝑛 |
| 19 |
16 18 17
|
wbr |
⊢ ( 𝑟 deg1 𝑓 ) ≤ 𝑛 |
| 20 |
|
vd |
⊢ 𝑑 |
| 21 |
|
cco1 |
⊢ coe1 |
| 22 |
15 21
|
cfv |
⊢ ( coe1 ‘ 𝑓 ) |
| 23 |
22
|
crn |
⊢ ran ( coe1 ‘ 𝑓 ) |
| 24 |
20
|
cv |
⊢ 𝑑 |
| 25 |
24
|
ccnv |
⊢ ◡ 𝑑 |
| 26 |
|
cz |
⊢ ℤ |
| 27 |
|
cc0 |
⊢ 0 |
| 28 |
27
|
csn |
⊢ { 0 } |
| 29 |
26 28
|
cdif |
⊢ ( ℤ ∖ { 0 } ) |
| 30 |
25 29
|
cima |
⊢ ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) |
| 31 |
|
cfz |
⊢ ... |
| 32 |
27 18 31
|
co |
⊢ ( 0 ... 𝑛 ) |
| 33 |
30 32
|
wss |
⊢ ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) ⊆ ( 0 ... 𝑛 ) |
| 34 |
33 20 23
|
wral |
⊢ ∀ 𝑑 ∈ ran ( coe1 ‘ 𝑓 ) ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) ⊆ ( 0 ... 𝑛 ) |
| 35 |
19 34
|
wa |
⊢ ( ( 𝑟 deg1 𝑓 ) ≤ 𝑛 ∧ ∀ 𝑑 ∈ ran ( coe1 ‘ 𝑓 ) ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) ⊆ ( 0 ... 𝑛 ) ) |
| 36 |
35 11 13
|
crab |
⊢ { 𝑓 ∈ ( Poly1 ‘ 𝑟 ) ∣ ( ( 𝑟 deg1 𝑓 ) ≤ 𝑛 ∧ ∀ 𝑑 ∈ ran ( coe1 ‘ 𝑓 ) ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) ⊆ ( 0 ... 𝑛 ) ) } |
| 37 |
9 10 36
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ { 𝑓 ∈ ( Poly1 ‘ 𝑟 ) ∣ ( ( 𝑟 deg1 𝑓 ) ≤ 𝑛 ∧ ∀ 𝑑 ∈ ran ( coe1 ‘ 𝑓 ) ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) ⊆ ( 0 ... 𝑛 ) ) } ) |
| 38 |
7 37 8
|
co |
⊢ ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { 𝑓 ∈ ( Poly1 ‘ 𝑟 ) ∣ ( ( 𝑟 deg1 𝑓 ) ≤ 𝑛 ∧ ∀ 𝑑 ∈ ran ( coe1 ‘ 𝑓 ) ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) ⊆ ( 0 ... 𝑛 ) ) } ) ) |
| 39 |
6 5 38
|
csb |
⊢ ⦋ ( Qp ‘ 𝑝 ) / 𝑟 ⦌ ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { 𝑓 ∈ ( Poly1 ‘ 𝑟 ) ∣ ( ( 𝑟 deg1 𝑓 ) ≤ 𝑛 ∧ ∀ 𝑑 ∈ ran ( coe1 ‘ 𝑓 ) ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) ⊆ ( 0 ... 𝑛 ) ) } ) ) |
| 40 |
1 2 39
|
cmpt |
⊢ ( 𝑝 ∈ ℙ ↦ ⦋ ( Qp ‘ 𝑝 ) / 𝑟 ⦌ ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { 𝑓 ∈ ( Poly1 ‘ 𝑟 ) ∣ ( ( 𝑟 deg1 𝑓 ) ≤ 𝑛 ∧ ∀ 𝑑 ∈ ran ( coe1 ‘ 𝑓 ) ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) ⊆ ( 0 ... 𝑛 ) ) } ) ) ) |
| 41 |
0 40
|
wceq |
⊢ _Qp = ( 𝑝 ∈ ℙ ↦ ⦋ ( Qp ‘ 𝑝 ) / 𝑟 ⦌ ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { 𝑓 ∈ ( Poly1 ‘ 𝑟 ) ∣ ( ( 𝑟 deg1 𝑓 ) ≤ 𝑛 ∧ ∀ 𝑑 ∈ ran ( coe1 ‘ 𝑓 ) ( ◡ 𝑑 “ ( ℤ ∖ { 0 } ) ) ⊆ ( 0 ... 𝑛 ) ) } ) ) ) |