Metamath Proof Explorer


Definition df-qpa

Description: Define the completion of the p -adic rationals. Here we simply define it as the splitting field of a dense sequence of polynomials (using as the n -th set the collection of polynomials with degree less than n and with coefficients < ( p ^ n ) ). Krasner's lemma will then show that all monic polynomials have splitting fields isomorphic to a sufficiently close Eisenstein polynomial from the list, and unramified extensions are generated by the polynomial x ^ ( p ^ n ) - x , which is in the list. Thus, every finite extension of Qp is a subfield of this field extension, so it is algebraically closed. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-qpa
|- _Qp = ( p e. Prime |-> [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cqpa
 |-  _Qp
1 vp
 |-  p
2 cprime
 |-  Prime
3 cqp
 |-  Qp
4 1 cv
 |-  p
5 4 3 cfv
 |-  ( Qp ` p )
6 vr
 |-  r
7 6 cv
 |-  r
8 cpsl
 |-  polySplitLim
9 vn
 |-  n
10 cn
 |-  NN
11 vf
 |-  f
12 cpl1
 |-  Poly1
13 7 12 cfv
 |-  ( Poly1 ` r )
14 cdg1
 |-  deg1
15 11 cv
 |-  f
16 7 15 14 co
 |-  ( r deg1 f )
17 cle
 |-  <_
18 9 cv
 |-  n
19 16 18 17 wbr
 |-  ( r deg1 f ) <_ n
20 vd
 |-  d
21 cco1
 |-  coe1
22 15 21 cfv
 |-  ( coe1 ` f )
23 22 crn
 |-  ran ( coe1 ` f )
24 20 cv
 |-  d
25 24 ccnv
 |-  `' d
26 cz
 |-  ZZ
27 cc0
 |-  0
28 27 csn
 |-  { 0 }
29 26 28 cdif
 |-  ( ZZ \ { 0 } )
30 25 29 cima
 |-  ( `' d " ( ZZ \ { 0 } ) )
31 cfz
 |-  ...
32 27 18 31 co
 |-  ( 0 ... n )
33 30 32 wss
 |-  ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n )
34 33 20 23 wral
 |-  A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n )
35 19 34 wa
 |-  ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) )
36 35 11 13 crab
 |-  { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) }
37 9 10 36 cmpt
 |-  ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } )
38 7 37 8 co
 |-  ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) )
39 6 5 38 csb
 |-  [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) )
40 1 2 39 cmpt
 |-  ( p e. Prime |-> [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) )
41 0 40 wceq
 |-  _Qp = ( p e. Prime |-> [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) )