| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cqpa |
|- _Qp |
| 1 |
|
vp |
|- p |
| 2 |
|
cprime |
|- Prime |
| 3 |
|
cqp |
|- Qp |
| 4 |
1
|
cv |
|- p |
| 5 |
4 3
|
cfv |
|- ( Qp ` p ) |
| 6 |
|
vr |
|- r |
| 7 |
6
|
cv |
|- r |
| 8 |
|
cpsl |
|- polySplitLim |
| 9 |
|
vn |
|- n |
| 10 |
|
cn |
|- NN |
| 11 |
|
vf |
|- f |
| 12 |
|
cpl1 |
|- Poly1 |
| 13 |
7 12
|
cfv |
|- ( Poly1 ` r ) |
| 14 |
|
cdg1 |
|- deg1 |
| 15 |
11
|
cv |
|- f |
| 16 |
7 15 14
|
co |
|- ( r deg1 f ) |
| 17 |
|
cle |
|- <_ |
| 18 |
9
|
cv |
|- n |
| 19 |
16 18 17
|
wbr |
|- ( r deg1 f ) <_ n |
| 20 |
|
vd |
|- d |
| 21 |
|
cco1 |
|- coe1 |
| 22 |
15 21
|
cfv |
|- ( coe1 ` f ) |
| 23 |
22
|
crn |
|- ran ( coe1 ` f ) |
| 24 |
20
|
cv |
|- d |
| 25 |
24
|
ccnv |
|- `' d |
| 26 |
|
cz |
|- ZZ |
| 27 |
|
cc0 |
|- 0 |
| 28 |
27
|
csn |
|- { 0 } |
| 29 |
26 28
|
cdif |
|- ( ZZ \ { 0 } ) |
| 30 |
25 29
|
cima |
|- ( `' d " ( ZZ \ { 0 } ) ) |
| 31 |
|
cfz |
|- ... |
| 32 |
27 18 31
|
co |
|- ( 0 ... n ) |
| 33 |
30 32
|
wss |
|- ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) |
| 34 |
33 20 23
|
wral |
|- A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) |
| 35 |
19 34
|
wa |
|- ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) |
| 36 |
35 11 13
|
crab |
|- { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } |
| 37 |
9 10 36
|
cmpt |
|- ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) |
| 38 |
7 37 8
|
co |
|- ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) |
| 39 |
6 5 38
|
csb |
|- [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) |
| 40 |
1 2 39
|
cmpt |
|- ( p e. Prime |-> [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) ) |
| 41 |
0 40
|
wceq |
|- _Qp = ( p e. Prime |-> [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) ) |