Step |
Hyp |
Ref |
Expression |
0 |
|
cqpa |
|- _Qp |
1 |
|
vp |
|- p |
2 |
|
cprime |
|- Prime |
3 |
|
cqp |
|- Qp |
4 |
1
|
cv |
|- p |
5 |
4 3
|
cfv |
|- ( Qp ` p ) |
6 |
|
vr |
|- r |
7 |
6
|
cv |
|- r |
8 |
|
cpsl |
|- polySplitLim |
9 |
|
vn |
|- n |
10 |
|
cn |
|- NN |
11 |
|
vf |
|- f |
12 |
|
cpl1 |
|- Poly1 |
13 |
7 12
|
cfv |
|- ( Poly1 ` r ) |
14 |
|
cdg1 |
|- deg1 |
15 |
11
|
cv |
|- f |
16 |
7 15 14
|
co |
|- ( r deg1 f ) |
17 |
|
cle |
|- <_ |
18 |
9
|
cv |
|- n |
19 |
16 18 17
|
wbr |
|- ( r deg1 f ) <_ n |
20 |
|
vd |
|- d |
21 |
|
cco1 |
|- coe1 |
22 |
15 21
|
cfv |
|- ( coe1 ` f ) |
23 |
22
|
crn |
|- ran ( coe1 ` f ) |
24 |
20
|
cv |
|- d |
25 |
24
|
ccnv |
|- `' d |
26 |
|
cz |
|- ZZ |
27 |
|
cc0 |
|- 0 |
28 |
27
|
csn |
|- { 0 } |
29 |
26 28
|
cdif |
|- ( ZZ \ { 0 } ) |
30 |
25 29
|
cima |
|- ( `' d " ( ZZ \ { 0 } ) ) |
31 |
|
cfz |
|- ... |
32 |
27 18 31
|
co |
|- ( 0 ... n ) |
33 |
30 32
|
wss |
|- ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) |
34 |
33 20 23
|
wral |
|- A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) |
35 |
19 34
|
wa |
|- ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) |
36 |
35 11 13
|
crab |
|- { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } |
37 |
9 10 36
|
cmpt |
|- ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) |
38 |
7 37 8
|
co |
|- ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) |
39 |
6 5 38
|
csb |
|- [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) |
40 |
1 2 39
|
cmpt |
|- ( p e. Prime |-> [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) ) |
41 |
0 40
|
wceq |
|- _Qp = ( p e. Prime |-> [_ ( Qp ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { f e. ( Poly1 ` r ) | ( ( r deg1 f ) <_ n /\ A. d e. ran ( coe1 ` f ) ( `' d " ( ZZ \ { 0 } ) ) C_ ( 0 ... n ) ) } ) ) ) |