| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crag |
⊢ ∟G |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vw |
⊢ 𝑤 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑔 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 7 |
6
|
cword |
⊢ Word ( Base ‘ 𝑔 ) |
| 8 |
|
chash |
⊢ ♯ |
| 9 |
3
|
cv |
⊢ 𝑤 |
| 10 |
9 8
|
cfv |
⊢ ( ♯ ‘ 𝑤 ) |
| 11 |
|
c3 |
⊢ 3 |
| 12 |
10 11
|
wceq |
⊢ ( ♯ ‘ 𝑤 ) = 3 |
| 13 |
|
cc0 |
⊢ 0 |
| 14 |
13 9
|
cfv |
⊢ ( 𝑤 ‘ 0 ) |
| 15 |
|
cds |
⊢ dist |
| 16 |
5 15
|
cfv |
⊢ ( dist ‘ 𝑔 ) |
| 17 |
|
c2 |
⊢ 2 |
| 18 |
17 9
|
cfv |
⊢ ( 𝑤 ‘ 2 ) |
| 19 |
14 18 16
|
co |
⊢ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) |
| 20 |
|
cmir |
⊢ pInvG |
| 21 |
5 20
|
cfv |
⊢ ( pInvG ‘ 𝑔 ) |
| 22 |
|
c1 |
⊢ 1 |
| 23 |
22 9
|
cfv |
⊢ ( 𝑤 ‘ 1 ) |
| 24 |
23 21
|
cfv |
⊢ ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) |
| 25 |
18 24
|
cfv |
⊢ ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) |
| 26 |
14 25 16
|
co |
⊢ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) |
| 27 |
19 26
|
wceq |
⊢ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) |
| 28 |
12 27
|
wa |
⊢ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) |
| 29 |
28 3 7
|
crab |
⊢ { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) } |
| 30 |
1 2 29
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) } ) |
| 31 |
0 30
|
wceq |
⊢ ∟G = ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) } ) |