Metamath Proof Explorer


Definition df-rag

Description: Define the class of right angles. Definition 8.1 of Schwabhauser p. 57. See israg . (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Assertion df-rag
|- raG = ( g e. _V |-> { w e. Word ( Base ` g ) | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crag
 |-  raG
1 vg
 |-  g
2 cvv
 |-  _V
3 vw
 |-  w
4 cbs
 |-  Base
5 1 cv
 |-  g
6 5 4 cfv
 |-  ( Base ` g )
7 6 cword
 |-  Word ( Base ` g )
8 chash
 |-  #
9 3 cv
 |-  w
10 9 8 cfv
 |-  ( # ` w )
11 c3
 |-  3
12 10 11 wceq
 |-  ( # ` w ) = 3
13 cc0
 |-  0
14 13 9 cfv
 |-  ( w ` 0 )
15 cds
 |-  dist
16 5 15 cfv
 |-  ( dist ` g )
17 c2
 |-  2
18 17 9 cfv
 |-  ( w ` 2 )
19 14 18 16 co
 |-  ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) )
20 cmir
 |-  pInvG
21 5 20 cfv
 |-  ( pInvG ` g )
22 c1
 |-  1
23 22 9 cfv
 |-  ( w ` 1 )
24 23 21 cfv
 |-  ( ( pInvG ` g ) ` ( w ` 1 ) )
25 18 24 cfv
 |-  ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) )
26 14 25 16 co
 |-  ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) )
27 19 26 wceq
 |-  ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) )
28 12 27 wa
 |-  ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) )
29 28 3 7 crab
 |-  { w e. Word ( Base ` g ) | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) }
30 1 2 29 cmpt
 |-  ( g e. _V |-> { w e. Word ( Base ` g ) | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } )
31 0 30 wceq
 |-  raG = ( g e. _V |-> { w e. Word ( Base ` g ) | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } )