Step |
Hyp |
Ref |
Expression |
0 |
|
crag |
|- raG |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- g |
6 |
5 4
|
cfv |
|- ( Base ` g ) |
7 |
6
|
cword |
|- Word ( Base ` g ) |
8 |
|
chash |
|- # |
9 |
3
|
cv |
|- w |
10 |
9 8
|
cfv |
|- ( # ` w ) |
11 |
|
c3 |
|- 3 |
12 |
10 11
|
wceq |
|- ( # ` w ) = 3 |
13 |
|
cc0 |
|- 0 |
14 |
13 9
|
cfv |
|- ( w ` 0 ) |
15 |
|
cds |
|- dist |
16 |
5 15
|
cfv |
|- ( dist ` g ) |
17 |
|
c2 |
|- 2 |
18 |
17 9
|
cfv |
|- ( w ` 2 ) |
19 |
14 18 16
|
co |
|- ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) |
20 |
|
cmir |
|- pInvG |
21 |
5 20
|
cfv |
|- ( pInvG ` g ) |
22 |
|
c1 |
|- 1 |
23 |
22 9
|
cfv |
|- ( w ` 1 ) |
24 |
23 21
|
cfv |
|- ( ( pInvG ` g ) ` ( w ` 1 ) ) |
25 |
18 24
|
cfv |
|- ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) |
26 |
14 25 16
|
co |
|- ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) |
27 |
19 26
|
wceq |
|- ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) |
28 |
12 27
|
wa |
|- ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) |
29 |
28 3 7
|
crab |
|- { w e. Word ( Base ` g ) | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } |
30 |
1 2 29
|
cmpt |
|- ( g e. _V |-> { w e. Word ( Base ` g ) | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } ) |
31 |
0 30
|
wceq |
|- raG = ( g e. _V |-> { w e. Word ( Base ` g ) | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } ) |