| Step |
Hyp |
Ref |
Expression |
| 0 |
|
creverse |
⊢ reverse |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
cc0 |
⊢ 0 |
| 5 |
|
cfzo |
⊢ ..^ |
| 6 |
|
chash |
⊢ ♯ |
| 7 |
1
|
cv |
⊢ 𝑠 |
| 8 |
7 6
|
cfv |
⊢ ( ♯ ‘ 𝑠 ) |
| 9 |
4 8 5
|
co |
⊢ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) |
| 10 |
|
cmin |
⊢ − |
| 11 |
|
c1 |
⊢ 1 |
| 12 |
8 11 10
|
co |
⊢ ( ( ♯ ‘ 𝑠 ) − 1 ) |
| 13 |
3
|
cv |
⊢ 𝑥 |
| 14 |
12 13 10
|
co |
⊢ ( ( ( ♯ ‘ 𝑠 ) − 1 ) − 𝑥 ) |
| 15 |
14 7
|
cfv |
⊢ ( 𝑠 ‘ ( ( ( ♯ ‘ 𝑠 ) − 1 ) − 𝑥 ) ) |
| 16 |
3 9 15
|
cmpt |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) ↦ ( 𝑠 ‘ ( ( ( ♯ ‘ 𝑠 ) − 1 ) − 𝑥 ) ) ) |
| 17 |
1 2 16
|
cmpt |
⊢ ( 𝑠 ∈ V ↦ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) ↦ ( 𝑠 ‘ ( ( ( ♯ ‘ 𝑠 ) − 1 ) − 𝑥 ) ) ) ) |
| 18 |
0 17
|
wceq |
⊢ reverse = ( 𝑠 ∈ V ↦ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) ↦ ( 𝑠 ‘ ( ( ( ♯ ‘ 𝑠 ) − 1 ) − 𝑥 ) ) ) ) |