| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝑊 ∈ 𝑉 → 𝑊 ∈ V ) |
| 2 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 4 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
| 5 |
2
|
oveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) |
| 7 |
4 6
|
fveq12d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) |
| 8 |
3 7
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
| 9 |
|
df-reverse |
⊢ reverse = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) ) ) ) |
| 10 |
|
ovex |
⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ V |
| 11 |
10
|
mptex |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ∈ V |
| 12 |
8 9 11
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
| 13 |
1 12
|
syl |
⊢ ( 𝑊 ∈ 𝑉 → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |