| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crloc |
⊢ RLocal |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
cmulr |
⊢ .r |
| 5 |
1
|
cv |
⊢ 𝑟 |
| 6 |
5 4
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
| 7 |
|
vx |
⊢ 𝑥 |
| 8 |
|
cbs |
⊢ Base |
| 9 |
5 8
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 10 |
3
|
cv |
⊢ 𝑠 |
| 11 |
9 10
|
cxp |
⊢ ( ( Base ‘ 𝑟 ) × 𝑠 ) |
| 12 |
|
vw |
⊢ 𝑤 |
| 13 |
|
cnx |
⊢ ndx |
| 14 |
13 8
|
cfv |
⊢ ( Base ‘ ndx ) |
| 15 |
12
|
cv |
⊢ 𝑤 |
| 16 |
14 15
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑤 〉 |
| 17 |
|
cplusg |
⊢ +g |
| 18 |
13 17
|
cfv |
⊢ ( +g ‘ ndx ) |
| 19 |
|
va |
⊢ 𝑎 |
| 20 |
|
vb |
⊢ 𝑏 |
| 21 |
|
c1st |
⊢ 1st |
| 22 |
19
|
cv |
⊢ 𝑎 |
| 23 |
22 21
|
cfv |
⊢ ( 1st ‘ 𝑎 ) |
| 24 |
7
|
cv |
⊢ 𝑥 |
| 25 |
|
c2nd |
⊢ 2nd |
| 26 |
20
|
cv |
⊢ 𝑏 |
| 27 |
26 25
|
cfv |
⊢ ( 2nd ‘ 𝑏 ) |
| 28 |
23 27 24
|
co |
⊢ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) |
| 29 |
5 17
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
| 30 |
26 21
|
cfv |
⊢ ( 1st ‘ 𝑏 ) |
| 31 |
22 25
|
cfv |
⊢ ( 2nd ‘ 𝑎 ) |
| 32 |
30 31 24
|
co |
⊢ ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) |
| 33 |
28 32 29
|
co |
⊢ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) |
| 34 |
31 27 24
|
co |
⊢ ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) |
| 35 |
33 34
|
cop |
⊢ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 |
| 36 |
19 20 15 15 35
|
cmpo |
⊢ ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) |
| 37 |
18 36
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 |
| 38 |
13 4
|
cfv |
⊢ ( .r ‘ ndx ) |
| 39 |
23 30 24
|
co |
⊢ ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) |
| 40 |
39 34
|
cop |
⊢ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 |
| 41 |
19 20 15 15 40
|
cmpo |
⊢ ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) |
| 42 |
38 41
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 |
| 43 |
16 37 42
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } |
| 44 |
|
csca |
⊢ Scalar |
| 45 |
13 44
|
cfv |
⊢ ( Scalar ‘ ndx ) |
| 46 |
5 44
|
cfv |
⊢ ( Scalar ‘ 𝑟 ) |
| 47 |
45 46
|
cop |
⊢ 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 |
| 48 |
|
cvsca |
⊢ ·𝑠 |
| 49 |
13 48
|
cfv |
⊢ ( ·𝑠 ‘ ndx ) |
| 50 |
|
vk |
⊢ 𝑘 |
| 51 |
46 8
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑟 ) ) |
| 52 |
50
|
cv |
⊢ 𝑘 |
| 53 |
5 48
|
cfv |
⊢ ( ·𝑠 ‘ 𝑟 ) |
| 54 |
52 23 53
|
co |
⊢ ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) |
| 55 |
54 31
|
cop |
⊢ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 |
| 56 |
50 19 51 15 55
|
cmpo |
⊢ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) |
| 57 |
49 56
|
cop |
⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 |
| 58 |
|
cip |
⊢ ·𝑖 |
| 59 |
13 58
|
cfv |
⊢ ( ·𝑖 ‘ ndx ) |
| 60 |
|
c0 |
⊢ ∅ |
| 61 |
59 60
|
cop |
⊢ 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 |
| 62 |
47 57 61
|
ctp |
⊢ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } |
| 63 |
43 62
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) |
| 64 |
|
cts |
⊢ TopSet |
| 65 |
13 64
|
cfv |
⊢ ( TopSet ‘ ndx ) |
| 66 |
5 64
|
cfv |
⊢ ( TopSet ‘ 𝑟 ) |
| 67 |
|
ctx |
⊢ ×t |
| 68 |
|
crest |
⊢ ↾t |
| 69 |
66 10 68
|
co |
⊢ ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) |
| 70 |
66 69 67
|
co |
⊢ ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) |
| 71 |
65 70
|
cop |
⊢ 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 |
| 72 |
|
cple |
⊢ le |
| 73 |
13 72
|
cfv |
⊢ ( le ‘ ndx ) |
| 74 |
22 15
|
wcel |
⊢ 𝑎 ∈ 𝑤 |
| 75 |
26 15
|
wcel |
⊢ 𝑏 ∈ 𝑤 |
| 76 |
74 75
|
wa |
⊢ ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) |
| 77 |
5 72
|
cfv |
⊢ ( le ‘ 𝑟 ) |
| 78 |
28 32 77
|
wbr |
⊢ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) |
| 79 |
76 78
|
wa |
⊢ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) |
| 80 |
79 19 20
|
copab |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } |
| 81 |
73 80
|
cop |
⊢ 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 |
| 82 |
|
cds |
⊢ dist |
| 83 |
13 82
|
cfv |
⊢ ( dist ‘ ndx ) |
| 84 |
5 82
|
cfv |
⊢ ( dist ‘ 𝑟 ) |
| 85 |
28 32 84
|
co |
⊢ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) |
| 86 |
19 20 15 15 85
|
cmpo |
⊢ ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) |
| 87 |
83 86
|
cop |
⊢ 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 |
| 88 |
71 81 87
|
ctp |
⊢ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } |
| 89 |
63 88
|
cun |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) |
| 90 |
|
cqus |
⊢ /s |
| 91 |
|
cerl |
⊢ ~RL |
| 92 |
5 10 91
|
co |
⊢ ( 𝑟 ~RL 𝑠 ) |
| 93 |
89 92 90
|
co |
⊢ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) |
| 94 |
12 11 93
|
csb |
⊢ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) |
| 95 |
7 6 94
|
csb |
⊢ ⦋ ( .r ‘ 𝑟 ) / 𝑥 ⦌ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) |
| 96 |
1 3 2 2 95
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ⦋ ( .r ‘ 𝑟 ) / 𝑥 ⦌ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) ) |
| 97 |
0 96
|
wceq |
⊢ RLocal = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ⦋ ( .r ‘ 𝑟 ) / 𝑥 ⦌ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) ) |