Metamath Proof Explorer


Definition df-rloc

Description: Define the operation giving the localization of a ring r by a given set s . The localized ring r RLocal s is the set of equivalence classes of pairs of elements in r over the relation r ~RL s with addition and multiplication defined naturally. (Contributed by Thierry Arnoux, 27-Apr-2025)

Ref Expression
Assertion df-rloc RLocal = r V , s V r / x Base r × s / w Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet r × t TopSet r 𝑡 s ndx a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a / 𝑠 r ~RL s

Detailed syntax breakdown

Step Hyp Ref Expression
0 crloc class RLocal
1 vr setvar r
2 cvv class V
3 vs setvar s
4 cmulr class 𝑟
5 1 cv setvar r
6 5 4 cfv class r
7 vx setvar x
8 cbs class Base
9 5 8 cfv class Base r
10 3 cv setvar s
11 9 10 cxp class Base r × s
12 vw setvar w
13 cnx class ndx
14 13 8 cfv class Base ndx
15 12 cv setvar w
16 14 15 cop class Base ndx w
17 cplusg class + 𝑔
18 13 17 cfv class + ndx
19 va setvar a
20 vb setvar b
21 c1st class 1 st
22 19 cv setvar a
23 22 21 cfv class 1 st a
24 7 cv setvar x
25 c2nd class 2 nd
26 20 cv setvar b
27 26 25 cfv class 2 nd b
28 23 27 24 co class 1 st a x 2 nd b
29 5 17 cfv class + r
30 26 21 cfv class 1 st b
31 22 25 cfv class 2 nd a
32 30 31 24 co class 1 st b x 2 nd a
33 28 32 29 co class 1 st a x 2 nd b + r 1 st b x 2 nd a
34 31 27 24 co class 2 nd a x 2 nd b
35 33 34 cop class 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b
36 19 20 15 15 35 cmpo class a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b
37 18 36 cop class + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b
38 13 4 cfv class ndx
39 23 30 24 co class 1 st a x 1 st b
40 39 34 cop class 1 st a x 1 st b 2 nd a x 2 nd b
41 19 20 15 15 40 cmpo class a w , b w 1 st a x 1 st b 2 nd a x 2 nd b
42 38 41 cop class ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b
43 16 37 42 ctp class Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b
44 csca class Scalar
45 13 44 cfv class Scalar ndx
46 5 44 cfv class Scalar r
47 45 46 cop class Scalar ndx Scalar r
48 cvsca class 𝑠
49 13 48 cfv class ndx
50 vk setvar k
51 46 8 cfv class Base Scalar r
52 50 cv setvar k
53 5 48 cfv class r
54 52 23 53 co class k r 1 st a
55 54 31 cop class k r 1 st a 2 nd a
56 50 19 51 15 55 cmpo class k Base Scalar r , a w k r 1 st a 2 nd a
57 49 56 cop class ndx k Base Scalar r , a w k r 1 st a 2 nd a
58 cip class 𝑖
59 13 58 cfv class 𝑖 ndx
60 c0 class
61 59 60 cop class 𝑖 ndx
62 47 57 61 ctp class Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx
63 43 62 cun class Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx
64 cts class TopSet
65 13 64 cfv class TopSet ndx
66 5 64 cfv class TopSet r
67 ctx class × t
68 crest class 𝑡
69 66 10 68 co class TopSet r 𝑡 s
70 66 69 67 co class TopSet r × t TopSet r 𝑡 s
71 65 70 cop class TopSet ndx TopSet r × t TopSet r 𝑡 s
72 cple class le
73 13 72 cfv class ndx
74 22 15 wcel wff a w
75 26 15 wcel wff b w
76 74 75 wa wff a w b w
77 5 72 cfv class r
78 28 32 77 wbr wff 1 st a x 2 nd b r 1 st b x 2 nd a
79 76 78 wa wff a w b w 1 st a x 2 nd b r 1 st b x 2 nd a
80 79 19 20 copab class a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a
81 73 80 cop class ndx a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a
82 cds class dist
83 13 82 cfv class dist ndx
84 5 82 cfv class dist r
85 28 32 84 co class 1 st a x 2 nd b dist r 1 st b x 2 nd a
86 19 20 15 15 85 cmpo class a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a
87 83 86 cop class dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a
88 71 81 87 ctp class TopSet ndx TopSet r × t TopSet r 𝑡 s ndx a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a
89 63 88 cun class Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet r × t TopSet r 𝑡 s ndx a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a
90 cqus class / 𝑠
91 cerl class ~RL
92 5 10 91 co class r ~RL s
93 89 92 90 co class Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet r × t TopSet r 𝑡 s ndx a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a / 𝑠 r ~RL s
94 12 11 93 csb class Base r × s / w Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet r × t TopSet r 𝑡 s ndx a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a / 𝑠 r ~RL s
95 7 6 94 csb class r / x Base r × s / w Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet r × t TopSet r 𝑡 s ndx a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a / 𝑠 r ~RL s
96 1 3 2 2 95 cmpo class r V , s V r / x Base r × s / w Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet r × t TopSet r 𝑡 s ndx a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a / 𝑠 r ~RL s
97 0 96 wceq wff RLocal = r V , s V r / x Base r × s / w Base ndx w + ndx a w , b w 1 st a x 2 nd b + r 1 st b x 2 nd a 2 nd a x 2 nd b ndx a w , b w 1 st a x 1 st b 2 nd a x 2 nd b Scalar ndx Scalar r ndx k Base Scalar r , a w k r 1 st a 2 nd a 𝑖 ndx TopSet ndx TopSet r × t TopSet r 𝑡 s ndx a b | a w b w 1 st a x 2 nd b r 1 st b x 2 nd a dist ndx a w , b w 1 st a x 2 nd b dist r 1 st b x 2 nd a / 𝑠 r ~RL s