Metamath Proof Explorer


Definition df-rngcALTV

Description: Definition of the category Rng, relativized to a subset u . This is the category of all non-unital rings in u and homomorphisms between these rings. Generally, we will take u to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Assertion df-rngcALTV RngCatALTV = ( 𝑢 ∈ V ↦ ( 𝑢 ∩ Rng ) / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 RngHomo 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) RngHomo 𝑧 ) , 𝑓 ∈ ( ( 1st𝑣 ) RngHomo ( 2nd𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crngcALTV RngCatALTV
1 vu 𝑢
2 cvv V
3 1 cv 𝑢
4 crng Rng
5 3 4 cin ( 𝑢 ∩ Rng )
6 vb 𝑏
7 cbs Base
8 cnx ndx
9 8 7 cfv ( Base ‘ ndx )
10 6 cv 𝑏
11 9 10 cop ⟨ ( Base ‘ ndx ) , 𝑏
12 chom Hom
13 8 12 cfv ( Hom ‘ ndx )
14 vx 𝑥
15 vy 𝑦
16 14 cv 𝑥
17 crngh RngHomo
18 15 cv 𝑦
19 16 18 17 co ( 𝑥 RngHomo 𝑦 )
20 14 15 10 10 19 cmpo ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 RngHomo 𝑦 ) )
21 13 20 cop ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 RngHomo 𝑦 ) ) ⟩
22 cco comp
23 8 22 cfv ( comp ‘ ndx )
24 vv 𝑣
25 10 10 cxp ( 𝑏 × 𝑏 )
26 vz 𝑧
27 vg 𝑔
28 c2nd 2nd
29 24 cv 𝑣
30 29 28 cfv ( 2nd𝑣 )
31 26 cv 𝑧
32 30 31 17 co ( ( 2nd𝑣 ) RngHomo 𝑧 )
33 vf 𝑓
34 c1st 1st
35 29 34 cfv ( 1st𝑣 )
36 35 30 17 co ( ( 1st𝑣 ) RngHomo ( 2nd𝑣 ) )
37 27 cv 𝑔
38 33 cv 𝑓
39 37 38 ccom ( 𝑔𝑓 )
40 27 33 32 36 39 cmpo ( 𝑔 ∈ ( ( 2nd𝑣 ) RngHomo 𝑧 ) , 𝑓 ∈ ( ( 1st𝑣 ) RngHomo ( 2nd𝑣 ) ) ↦ ( 𝑔𝑓 ) )
41 24 26 25 10 40 cmpo ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) RngHomo 𝑧 ) , 𝑓 ∈ ( ( 1st𝑣 ) RngHomo ( 2nd𝑣 ) ) ↦ ( 𝑔𝑓 ) ) )
42 23 41 cop ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) RngHomo 𝑧 ) , 𝑓 ∈ ( ( 1st𝑣 ) RngHomo ( 2nd𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩
43 11 21 42 ctp { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 RngHomo 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) RngHomo 𝑧 ) , 𝑓 ∈ ( ( 1st𝑣 ) RngHomo ( 2nd𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ }
44 6 5 43 csb ( 𝑢 ∩ Rng ) / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 RngHomo 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) RngHomo 𝑧 ) , 𝑓 ∈ ( ( 1st𝑣 ) RngHomo ( 2nd𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ }
45 1 2 44 cmpt ( 𝑢 ∈ V ↦ ( 𝑢 ∩ Rng ) / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 RngHomo 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) RngHomo 𝑧 ) , 𝑓 ∈ ( ( 1st𝑣 ) RngHomo ( 2nd𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } )
46 0 45 wceq RngCatALTV = ( 𝑢 ∈ V ↦ ( 𝑢 ∩ Rng ) / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 RngHomo 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) RngHomo 𝑧 ) , 𝑓 ∈ ( ( 1st𝑣 ) RngHomo ( 2nd𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } )