| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crngcALTV | ⊢ RngCatALTV | 
						
							| 1 |  | vu | ⊢ 𝑢 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 | 1 | cv | ⊢ 𝑢 | 
						
							| 4 |  | crng | ⊢ Rng | 
						
							| 5 | 3 4 | cin | ⊢ ( 𝑢  ∩  Rng ) | 
						
							| 6 |  | vb | ⊢ 𝑏 | 
						
							| 7 |  | cbs | ⊢ Base | 
						
							| 8 |  | cnx | ⊢ ndx | 
						
							| 9 | 8 7 | cfv | ⊢ ( Base ‘ ndx ) | 
						
							| 10 | 6 | cv | ⊢ 𝑏 | 
						
							| 11 | 9 10 | cop | ⊢ 〈 ( Base ‘ ndx ) ,  𝑏 〉 | 
						
							| 12 |  | chom | ⊢ Hom | 
						
							| 13 | 8 12 | cfv | ⊢ ( Hom  ‘ ndx ) | 
						
							| 14 |  | vx | ⊢ 𝑥 | 
						
							| 15 |  | vy | ⊢ 𝑦 | 
						
							| 16 | 14 | cv | ⊢ 𝑥 | 
						
							| 17 |  | crnghm | ⊢  RngHom | 
						
							| 18 | 15 | cv | ⊢ 𝑦 | 
						
							| 19 | 16 18 17 | co | ⊢ ( 𝑥  RngHom  𝑦 ) | 
						
							| 20 | 14 15 10 10 19 | cmpo | ⊢ ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) | 
						
							| 21 | 13 20 | cop | ⊢ 〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉 | 
						
							| 22 |  | cco | ⊢ comp | 
						
							| 23 | 8 22 | cfv | ⊢ ( comp ‘ ndx ) | 
						
							| 24 |  | vv | ⊢ 𝑣 | 
						
							| 25 | 10 10 | cxp | ⊢ ( 𝑏  ×  𝑏 ) | 
						
							| 26 |  | vz | ⊢ 𝑧 | 
						
							| 27 |  | vg | ⊢ 𝑔 | 
						
							| 28 |  | c2nd | ⊢ 2nd | 
						
							| 29 | 24 | cv | ⊢ 𝑣 | 
						
							| 30 | 29 28 | cfv | ⊢ ( 2nd  ‘ 𝑣 ) | 
						
							| 31 | 26 | cv | ⊢ 𝑧 | 
						
							| 32 | 30 31 17 | co | ⊢ ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) | 
						
							| 33 |  | vf | ⊢ 𝑓 | 
						
							| 34 |  | c1st | ⊢ 1st | 
						
							| 35 | 29 34 | cfv | ⊢ ( 1st  ‘ 𝑣 ) | 
						
							| 36 | 35 30 17 | co | ⊢ ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) ) | 
						
							| 37 | 27 | cv | ⊢ 𝑔 | 
						
							| 38 | 33 | cv | ⊢ 𝑓 | 
						
							| 39 | 37 38 | ccom | ⊢ ( 𝑔  ∘  𝑓 ) | 
						
							| 40 | 27 33 32 36 39 | cmpo | ⊢ ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) | 
						
							| 41 | 24 26 25 10 40 | cmpo | ⊢ ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) | 
						
							| 42 | 23 41 | cop | ⊢ 〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 | 
						
							| 43 | 11 21 42 | ctp | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 } | 
						
							| 44 | 6 5 43 | csb | ⊢ ⦋ ( 𝑢  ∩  Rng )  /  𝑏 ⦌ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 } | 
						
							| 45 | 1 2 44 | cmpt | ⊢ ( 𝑢  ∈  V  ↦  ⦋ ( 𝑢  ∩  Rng )  /  𝑏 ⦌ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 } ) | 
						
							| 46 | 0 45 | wceq | ⊢ RngCatALTV  =  ( 𝑢  ∈  V  ↦  ⦋ ( 𝑢  ∩  Rng )  /  𝑏 ⦌ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 } ) |