| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcvalALTV.c | ⊢ 𝐶  =  ( RngCatALTV ‘ 𝑈 ) | 
						
							| 2 |  | rngcvalALTV.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 3 |  | rngcvalALTV.b | ⊢ ( 𝜑  →  𝐵  =  ( 𝑈  ∩  Rng ) ) | 
						
							| 4 |  | rngcvalALTV.h | ⊢ ( 𝜑  →  𝐻  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 5 |  | rngcvalALTV.o | ⊢ ( 𝜑  →   ·   =  ( 𝑣  ∈  ( 𝐵  ×  𝐵 ) ,  𝑧  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) ) | 
						
							| 6 |  | df-rngcALTV | ⊢ RngCatALTV  =  ( 𝑢  ∈  V  ↦  ⦋ ( 𝑢  ∩  Rng )  /  𝑏 ⦌ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 } ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  RngCatALTV  =  ( 𝑢  ∈  V  ↦  ⦋ ( 𝑢  ∩  Rng )  /  𝑏 ⦌ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 } ) ) | 
						
							| 8 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 9 | 8 | inex1 | ⊢ ( 𝑢  ∩  Rng )  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑢  ∩  Rng )  ∈  V ) | 
						
							| 11 |  | ineq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢  ∩  Rng )  =  ( 𝑈  ∩  Rng ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑢  ∩  Rng )  =  ( 𝑈  ∩  Rng ) ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  𝐵  =  ( 𝑈  ∩  Rng ) ) | 
						
							| 14 | 12 13 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑢  ∩  Rng )  =  𝐵 ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  𝑏  =  𝐵 ) | 
						
							| 16 | 15 | opeq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  〈 ( Base ‘ ndx ) ,  𝑏 〉  =  〈 ( Base ‘ ndx ) ,  𝐵 〉 ) | 
						
							| 17 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  ( 𝑥  RngHom  𝑦 )  =  ( 𝑥  RngHom  𝑦 ) ) | 
						
							| 18 | 15 15 17 | mpoeq123dv | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 19 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  𝐻  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 20 | 18 19 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) )  =  𝐻 ) | 
						
							| 21 | 20 | opeq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉  =  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) | 
						
							| 22 | 15 | sqxpeqd | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  ( 𝑏  ×  𝑏 )  =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 23 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) )  =  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) | 
						
							| 24 | 22 15 23 | mpoeq123dv | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) )  =  ( 𝑣  ∈  ( 𝐵  ×  𝐵 ) ,  𝑧  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) ) | 
						
							| 25 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →   ·   =  ( 𝑣  ∈  ( 𝐵  ×  𝐵 ) ,  𝑧  ∈  𝐵  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) ) | 
						
							| 26 | 24 25 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) )  =   ·  ) | 
						
							| 27 | 26 | opeq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉  =  〈 ( comp ‘ ndx ) ,   ·  〉 ) | 
						
							| 28 | 16 21 27 | tpeq123d | ⊢ ( ( ( 𝜑  ∧  𝑢  =  𝑈 )  ∧  𝑏  =  𝐵 )  →  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 } ) | 
						
							| 29 | 10 14 28 | csbied2 | ⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ⦋ ( 𝑢  ∩  Rng )  /  𝑏 ⦌ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  RngHom  𝑦 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑏  ×  𝑏 ) ,  𝑧  ∈  𝑏  ↦  ( 𝑔  ∈  ( ( 2nd  ‘ 𝑣 )  RngHom  𝑧 ) ,  𝑓  ∈  ( ( 1st  ‘ 𝑣 )  RngHom  ( 2nd  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 } ) | 
						
							| 30 |  | elex | ⊢ ( 𝑈  ∈  𝑉  →  𝑈  ∈  V ) | 
						
							| 31 | 2 30 | syl | ⊢ ( 𝜑  →  𝑈  ∈  V ) | 
						
							| 32 |  | tpex | ⊢ { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 }  ∈  V | 
						
							| 33 | 32 | a1i | ⊢ ( 𝜑  →  { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 }  ∈  V ) | 
						
							| 34 | 7 29 31 33 | fvmptd | ⊢ ( 𝜑  →  ( RngCatALTV ‘ 𝑈 )  =  { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 } ) | 
						
							| 35 | 1 34 | eqtrid | ⊢ ( 𝜑  →  𝐶  =  { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 } ) |