Metamath Proof Explorer


Theorem rngcvalALTV

Description: Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcvalALTV.c C = RngCatALTV U
rngcvalALTV.u φ U V
rngcvalALTV.b φ B = U Rng
rngcvalALTV.h φ H = x B , y B x RngHomo y
rngcvalALTV.o φ · ˙ = v B × B , z B g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f
Assertion rngcvalALTV φ C = Base ndx B Hom ndx H comp ndx · ˙

Proof

Step Hyp Ref Expression
1 rngcvalALTV.c C = RngCatALTV U
2 rngcvalALTV.u φ U V
3 rngcvalALTV.b φ B = U Rng
4 rngcvalALTV.h φ H = x B , y B x RngHomo y
5 rngcvalALTV.o φ · ˙ = v B × B , z B g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f
6 df-rngcALTV RngCatALTV = u V u Rng / b Base ndx b Hom ndx x b , y b x RngHomo y comp ndx v b × b , z b g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f
7 6 a1i φ RngCatALTV = u V u Rng / b Base ndx b Hom ndx x b , y b x RngHomo y comp ndx v b × b , z b g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f
8 vex u V
9 8 inex1 u Rng V
10 9 a1i φ u = U u Rng V
11 ineq1 u = U u Rng = U Rng
12 11 adantl φ u = U u Rng = U Rng
13 3 adantr φ u = U B = U Rng
14 12 13 eqtr4d φ u = U u Rng = B
15 simpr φ u = U b = B b = B
16 15 opeq2d φ u = U b = B Base ndx b = Base ndx B
17 eqidd φ u = U b = B x RngHomo y = x RngHomo y
18 15 15 17 mpoeq123dv φ u = U b = B x b , y b x RngHomo y = x B , y B x RngHomo y
19 4 ad2antrr φ u = U b = B H = x B , y B x RngHomo y
20 18 19 eqtr4d φ u = U b = B x b , y b x RngHomo y = H
21 20 opeq2d φ u = U b = B Hom ndx x b , y b x RngHomo y = Hom ndx H
22 15 sqxpeqd φ u = U b = B b × b = B × B
23 eqidd φ u = U b = B g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f = g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f
24 22 15 23 mpoeq123dv φ u = U b = B v b × b , z b g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f = v B × B , z B g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f
25 5 ad2antrr φ u = U b = B · ˙ = v B × B , z B g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f
26 24 25 eqtr4d φ u = U b = B v b × b , z b g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f = · ˙
27 26 opeq2d φ u = U b = B comp ndx v b × b , z b g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f = comp ndx · ˙
28 16 21 27 tpeq123d φ u = U b = B Base ndx b Hom ndx x b , y b x RngHomo y comp ndx v b × b , z b g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f = Base ndx B Hom ndx H comp ndx · ˙
29 10 14 28 csbied2 φ u = U u Rng / b Base ndx b Hom ndx x b , y b x RngHomo y comp ndx v b × b , z b g 2 nd v RngHomo z , f 1 st v RngHomo 2 nd v g f = Base ndx B Hom ndx H comp ndx · ˙
30 elex U V U V
31 2 30 syl φ U V
32 tpex Base ndx B Hom ndx H comp ndx · ˙ V
33 32 a1i φ Base ndx B Hom ndx H comp ndx · ˙ V
34 7 29 31 33 fvmptd φ RngCatALTV U = Base ndx B Hom ndx H comp ndx · ˙
35 1 34 syl5eq φ C = Base ndx B Hom ndx H comp ndx · ˙