Metamath Proof Explorer


Theorem rngcbasALTV

Description: Set of objects of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c C = RngCatALTV U
rngcbasALTV.b B = Base C
rngcbasALTV.u φ U V
Assertion rngcbasALTV φ B = U Rng

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c C = RngCatALTV U
2 rngcbasALTV.b B = Base C
3 rngcbasALTV.u φ U V
4 eqidd φ U Rng = U Rng
5 eqidd φ x U Rng , y U Rng x RngHomo y = x U Rng , y U Rng x RngHomo y
6 eqidd φ v U Rng × U Rng , z U Rng f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g = v U Rng × U Rng , z U Rng f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
7 1 3 4 5 6 rngcvalALTV φ C = Base ndx U Rng Hom ndx x U Rng , y U Rng x RngHomo y comp ndx v U Rng × U Rng , z U Rng f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
8 catstr Base ndx U Rng Hom ndx x U Rng , y U Rng x RngHomo y comp ndx v U Rng × U Rng , z U Rng f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g Struct 1 15
9 baseid Base = Slot Base ndx
10 snsstp1 Base ndx U Rng Base ndx U Rng Hom ndx x U Rng , y U Rng x RngHomo y comp ndx v U Rng × U Rng , z U Rng f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
11 inex1g U V U Rng V
12 3 11 syl φ U Rng V
13 7 8 9 10 12 2 strfv3 φ B = U Rng