Metamath Proof Explorer


Definition df-rngcALTV

Description: Definition of the category Rng, relativized to a subset u . This is the category of all non-unital rings in u and homomorphisms between these rings. Generally, we will take u to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Assertion df-rngcALTV RngCatALTV=uVuRng/bBasendxbHomndxxb,ybxRngHomycompndxvb×b,zbg2ndvRngHomz,f1stvRngHom2ndvgf

Detailed syntax breakdown

Step Hyp Ref Expression
0 crngcALTV classRngCatALTV
1 vu setvaru
2 cvv classV
3 1 cv setvaru
4 crng classRng
5 3 4 cin classuRng
6 vb setvarb
7 cbs classBase
8 cnx classndx
9 8 7 cfv classBasendx
10 6 cv setvarb
11 9 10 cop classBasendxb
12 chom classHom
13 8 12 cfv classHomndx
14 vx setvarx
15 vy setvary
16 14 cv setvarx
17 crnghm classRngHom
18 15 cv setvary
19 16 18 17 co classxRngHomy
20 14 15 10 10 19 cmpo classxb,ybxRngHomy
21 13 20 cop classHomndxxb,ybxRngHomy
22 cco classcomp
23 8 22 cfv classcompndx
24 vv setvarv
25 10 10 cxp classb×b
26 vz setvarz
27 vg setvarg
28 c2nd class2nd
29 24 cv setvarv
30 29 28 cfv class2ndv
31 26 cv setvarz
32 30 31 17 co class2ndvRngHomz
33 vf setvarf
34 c1st class1st
35 29 34 cfv class1stv
36 35 30 17 co class1stvRngHom2ndv
37 27 cv setvarg
38 33 cv setvarf
39 37 38 ccom classgf
40 27 33 32 36 39 cmpo classg2ndvRngHomz,f1stvRngHom2ndvgf
41 24 26 25 10 40 cmpo classvb×b,zbg2ndvRngHomz,f1stvRngHom2ndvgf
42 23 41 cop classcompndxvb×b,zbg2ndvRngHomz,f1stvRngHom2ndvgf
43 11 21 42 ctp classBasendxbHomndxxb,ybxRngHomycompndxvb×b,zbg2ndvRngHomz,f1stvRngHom2ndvgf
44 6 5 43 csb classuRng/bBasendxbHomndxxb,ybxRngHomycompndxvb×b,zbg2ndvRngHomz,f1stvRngHom2ndvgf
45 1 2 44 cmpt classuVuRng/bBasendxbHomndxxb,ybxRngHomycompndxvb×b,zbg2ndvRngHomz,f1stvRngHom2ndvgf
46 0 45 wceq wffRngCatALTV=uVuRng/bBasendxbHomndxxb,ybxRngHomycompndxvb×b,zbg2ndvRngHomz,f1stvRngHom2ndvgf