| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcvalALTV.c |  |-  C = ( RngCatALTV ` U ) | 
						
							| 2 |  | rngcvalALTV.u |  |-  ( ph -> U e. V ) | 
						
							| 3 |  | rngcvalALTV.b |  |-  ( ph -> B = ( U i^i Rng ) ) | 
						
							| 4 |  | rngcvalALTV.h |  |-  ( ph -> H = ( x e. B , y e. B |-> ( x RngHom y ) ) ) | 
						
							| 5 |  | rngcvalALTV.o |  |-  ( ph -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) ) | 
						
							| 6 |  | df-rngcALTV |  |-  RngCatALTV = ( u e. _V |-> [_ ( u i^i Rng ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RngHom y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> RngCatALTV = ( u e. _V |-> [_ ( u i^i Rng ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RngHom y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } ) ) | 
						
							| 8 |  | vex |  |-  u e. _V | 
						
							| 9 | 8 | inex1 |  |-  ( u i^i Rng ) e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ( ph /\ u = U ) -> ( u i^i Rng ) e. _V ) | 
						
							| 11 |  | ineq1 |  |-  ( u = U -> ( u i^i Rng ) = ( U i^i Rng ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ u = U ) -> ( u i^i Rng ) = ( U i^i Rng ) ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ u = U ) -> B = ( U i^i Rng ) ) | 
						
							| 14 | 12 13 | eqtr4d |  |-  ( ( ph /\ u = U ) -> ( u i^i Rng ) = B ) | 
						
							| 15 |  | simpr |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> b = B ) | 
						
							| 16 | 15 | opeq2d |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , B >. ) | 
						
							| 17 |  | eqidd |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> ( x RngHom y ) = ( x RngHom y ) ) | 
						
							| 18 | 15 15 17 | mpoeq123dv |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> ( x e. b , y e. b |-> ( x RngHom y ) ) = ( x e. B , y e. B |-> ( x RngHom y ) ) ) | 
						
							| 19 | 4 | ad2antrr |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> H = ( x e. B , y e. B |-> ( x RngHom y ) ) ) | 
						
							| 20 | 18 19 | eqtr4d |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> ( x e. b , y e. b |-> ( x RngHom y ) ) = H ) | 
						
							| 21 | 20 | opeq2d |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RngHom y ) ) >. = <. ( Hom ` ndx ) , H >. ) | 
						
							| 22 | 15 | sqxpeqd |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> ( b X. b ) = ( B X. B ) ) | 
						
							| 23 |  | eqidd |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) = ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) | 
						
							| 24 | 22 15 23 | mpoeq123dv |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) ) | 
						
							| 25 | 5 | ad2antrr |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) ) | 
						
							| 26 | 24 25 | eqtr4d |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) = .x. ) | 
						
							| 27 | 26 | opeq2d |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. = <. ( comp ` ndx ) , .x. >. ) | 
						
							| 28 | 16 21 27 | tpeq123d |  |-  ( ( ( ph /\ u = U ) /\ b = B ) -> { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RngHom y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) | 
						
							| 29 | 10 14 28 | csbied2 |  |-  ( ( ph /\ u = U ) -> [_ ( u i^i Rng ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RngHom y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RngHom z ) , f e. ( ( 1st ` v ) RngHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) | 
						
							| 30 |  | elex |  |-  ( U e. V -> U e. _V ) | 
						
							| 31 | 2 30 | syl |  |-  ( ph -> U e. _V ) | 
						
							| 32 |  | tpex |  |-  { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V | 
						
							| 33 | 32 | a1i |  |-  ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V ) | 
						
							| 34 | 7 29 31 33 | fvmptd |  |-  ( ph -> ( RngCatALTV ` U ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) | 
						
							| 35 | 1 34 | eqtrid |  |-  ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |