Step |
Hyp |
Ref |
Expression |
0 |
|
crpm |
⊢ RPrime |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cvv |
⊢ V |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑤 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
6 |
|
vb |
⊢ 𝑏 |
7 |
|
vp |
⊢ 𝑝 |
8 |
6
|
cv |
⊢ 𝑏 |
9 |
|
cui |
⊢ Unit |
10 |
4 9
|
cfv |
⊢ ( Unit ‘ 𝑤 ) |
11 |
|
c0g |
⊢ 0g |
12 |
4 11
|
cfv |
⊢ ( 0g ‘ 𝑤 ) |
13 |
12
|
csn |
⊢ { ( 0g ‘ 𝑤 ) } |
14 |
10 13
|
cun |
⊢ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g ‘ 𝑤 ) } ) |
15 |
8 14
|
cdif |
⊢ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g ‘ 𝑤 ) } ) ) |
16 |
|
vx |
⊢ 𝑥 |
17 |
|
vy |
⊢ 𝑦 |
18 |
|
cdsr |
⊢ ∥r |
19 |
4 18
|
cfv |
⊢ ( ∥r ‘ 𝑤 ) |
20 |
|
vd |
⊢ 𝑑 |
21 |
7
|
cv |
⊢ 𝑝 |
22 |
20
|
cv |
⊢ 𝑑 |
23 |
16
|
cv |
⊢ 𝑥 |
24 |
|
cmulr |
⊢ .r |
25 |
4 24
|
cfv |
⊢ ( .r ‘ 𝑤 ) |
26 |
17
|
cv |
⊢ 𝑦 |
27 |
23 26 25
|
co |
⊢ ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) |
28 |
21 27 22
|
wbr |
⊢ 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) |
29 |
21 23 22
|
wbr |
⊢ 𝑝 𝑑 𝑥 |
30 |
21 26 22
|
wbr |
⊢ 𝑝 𝑑 𝑦 |
31 |
29 30
|
wo |
⊢ ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) |
32 |
28 31
|
wi |
⊢ ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) |
33 |
32 20 19
|
wsbc |
⊢ [ ( ∥r ‘ 𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) |
34 |
33 17 8
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) |
35 |
34 16 8
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) |
36 |
35 7 15
|
crab |
⊢ { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g ‘ 𝑤 ) } ) ) ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) } |
37 |
6 5 36
|
csb |
⊢ ⦋ ( Base ‘ 𝑤 ) / 𝑏 ⦌ { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g ‘ 𝑤 ) } ) ) ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) } |
38 |
1 2 37
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ ⦋ ( Base ‘ 𝑤 ) / 𝑏 ⦌ { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g ‘ 𝑤 ) } ) ) ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) } ) |
39 |
0 38
|
wceq |
⊢ RPrime = ( 𝑤 ∈ V ↦ ⦋ ( Base ‘ 𝑤 ) / 𝑏 ⦌ { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g ‘ 𝑤 ) } ) ) ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) } ) |