Metamath Proof Explorer


Definition df-rprm

Description: Define the function associating with a ring its set of prime elements. A prime element is a nonzero non-unit that satisfies an equivalent of Euclid's lemma euclemma . Prime elements are closely related to irreducible elements (see df-irred ). (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Assertion df-rprm RPrime = ( 𝑤 ∈ V ↦ ( Base ‘ 𝑤 ) / 𝑏 { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g𝑤 ) } ) ) ∣ ∀ 𝑥𝑏𝑦𝑏 [ ( ∥r𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crpm RPrime
1 vw 𝑤
2 cvv V
3 cbs Base
4 1 cv 𝑤
5 4 3 cfv ( Base ‘ 𝑤 )
6 vb 𝑏
7 vp 𝑝
8 6 cv 𝑏
9 cui Unit
10 4 9 cfv ( Unit ‘ 𝑤 )
11 c0g 0g
12 4 11 cfv ( 0g𝑤 )
13 12 csn { ( 0g𝑤 ) }
14 10 13 cun ( ( Unit ‘ 𝑤 ) ∪ { ( 0g𝑤 ) } )
15 8 14 cdif ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g𝑤 ) } ) )
16 vx 𝑥
17 vy 𝑦
18 cdsr r
19 4 18 cfv ( ∥r𝑤 )
20 vd 𝑑
21 7 cv 𝑝
22 20 cv 𝑑
23 16 cv 𝑥
24 cmulr .r
25 4 24 cfv ( .r𝑤 )
26 17 cv 𝑦
27 23 26 25 co ( 𝑥 ( .r𝑤 ) 𝑦 )
28 21 27 22 wbr 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 )
29 21 23 22 wbr 𝑝 𝑑 𝑥
30 21 26 22 wbr 𝑝 𝑑 𝑦
31 29 30 wo ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 )
32 28 31 wi ( 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 ) )
33 32 20 19 wsbc [ ( ∥r𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 ) )
34 33 17 8 wral 𝑦𝑏 [ ( ∥r𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 ) )
35 34 16 8 wral 𝑥𝑏𝑦𝑏 [ ( ∥r𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 ) )
36 35 7 15 crab { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g𝑤 ) } ) ) ∣ ∀ 𝑥𝑏𝑦𝑏 [ ( ∥r𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 ) ) }
37 6 5 36 csb ( Base ‘ 𝑤 ) / 𝑏 { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g𝑤 ) } ) ) ∣ ∀ 𝑥𝑏𝑦𝑏 [ ( ∥r𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 ) ) }
38 1 2 37 cmpt ( 𝑤 ∈ V ↦ ( Base ‘ 𝑤 ) / 𝑏 { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g𝑤 ) } ) ) ∣ ∀ 𝑥𝑏𝑦𝑏 [ ( ∥r𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 ) ) } )
39 0 38 wceq RPrime = ( 𝑤 ∈ V ↦ ( Base ‘ 𝑤 ) / 𝑏 { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑤 ) ∪ { ( 0g𝑤 ) } ) ) ∣ ∀ 𝑥𝑏𝑦𝑏 [ ( ∥r𝑤 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r𝑤 ) 𝑦 ) → ( 𝑝 𝑑 𝑥𝑝 𝑑 𝑦 ) ) } )