Step |
Hyp |
Ref |
Expression |
0 |
|
crpm |
|- RPrime |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
cbs |
|- Base |
4 |
1
|
cv |
|- w |
5 |
4 3
|
cfv |
|- ( Base ` w ) |
6 |
|
vb |
|- b |
7 |
|
vp |
|- p |
8 |
6
|
cv |
|- b |
9 |
|
cui |
|- Unit |
10 |
4 9
|
cfv |
|- ( Unit ` w ) |
11 |
|
c0g |
|- 0g |
12 |
4 11
|
cfv |
|- ( 0g ` w ) |
13 |
12
|
csn |
|- { ( 0g ` w ) } |
14 |
10 13
|
cun |
|- ( ( Unit ` w ) u. { ( 0g ` w ) } ) |
15 |
8 14
|
cdif |
|- ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) |
16 |
|
vx |
|- x |
17 |
|
vy |
|- y |
18 |
|
cdsr |
|- ||r |
19 |
4 18
|
cfv |
|- ( ||r ` w ) |
20 |
|
vd |
|- d |
21 |
7
|
cv |
|- p |
22 |
20
|
cv |
|- d |
23 |
16
|
cv |
|- x |
24 |
|
cmulr |
|- .r |
25 |
4 24
|
cfv |
|- ( .r ` w ) |
26 |
17
|
cv |
|- y |
27 |
23 26 25
|
co |
|- ( x ( .r ` w ) y ) |
28 |
21 27 22
|
wbr |
|- p d ( x ( .r ` w ) y ) |
29 |
21 23 22
|
wbr |
|- p d x |
30 |
21 26 22
|
wbr |
|- p d y |
31 |
29 30
|
wo |
|- ( p d x \/ p d y ) |
32 |
28 31
|
wi |
|- ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) |
33 |
32 20 19
|
wsbc |
|- [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) |
34 |
33 17 8
|
wral |
|- A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) |
35 |
34 16 8
|
wral |
|- A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) |
36 |
35 7 15
|
crab |
|- { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } |
37 |
6 5 36
|
csb |
|- [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } |
38 |
1 2 37
|
cmpt |
|- ( w e. _V |-> [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } ) |
39 |
0 38
|
wceq |
|- RPrime = ( w e. _V |-> [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } ) |