Metamath Proof Explorer


Definition df-rprm

Description: Define the function associating with a ring its set of prime elements. A prime element is a nonzero non-unit that satisfies an equivalent of Euclid's lemma euclemma . Prime elements are closely related to irreducible elements (see df-irred ). (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Assertion df-rprm
|- RPrime = ( w e. _V |-> [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crpm
 |-  RPrime
1 vw
 |-  w
2 cvv
 |-  _V
3 cbs
 |-  Base
4 1 cv
 |-  w
5 4 3 cfv
 |-  ( Base ` w )
6 vb
 |-  b
7 vp
 |-  p
8 6 cv
 |-  b
9 cui
 |-  Unit
10 4 9 cfv
 |-  ( Unit ` w )
11 c0g
 |-  0g
12 4 11 cfv
 |-  ( 0g ` w )
13 12 csn
 |-  { ( 0g ` w ) }
14 10 13 cun
 |-  ( ( Unit ` w ) u. { ( 0g ` w ) } )
15 8 14 cdif
 |-  ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) )
16 vx
 |-  x
17 vy
 |-  y
18 cdsr
 |-  ||r
19 4 18 cfv
 |-  ( ||r ` w )
20 vd
 |-  d
21 7 cv
 |-  p
22 20 cv
 |-  d
23 16 cv
 |-  x
24 cmulr
 |-  .r
25 4 24 cfv
 |-  ( .r ` w )
26 17 cv
 |-  y
27 23 26 25 co
 |-  ( x ( .r ` w ) y )
28 21 27 22 wbr
 |-  p d ( x ( .r ` w ) y )
29 21 23 22 wbr
 |-  p d x
30 21 26 22 wbr
 |-  p d y
31 29 30 wo
 |-  ( p d x \/ p d y )
32 28 31 wi
 |-  ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) )
33 32 20 19 wsbc
 |-  [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) )
34 33 17 8 wral
 |-  A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) )
35 34 16 8 wral
 |-  A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) )
36 35 7 15 crab
 |-  { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) }
37 6 5 36 csb
 |-  [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) }
38 1 2 37 cmpt
 |-  ( w e. _V |-> [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } )
39 0 38 wceq
 |-  RPrime = ( w e. _V |-> [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } )