| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crpm |
|- RPrime |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- w |
| 5 |
4 3
|
cfv |
|- ( Base ` w ) |
| 6 |
|
vb |
|- b |
| 7 |
|
vp |
|- p |
| 8 |
6
|
cv |
|- b |
| 9 |
|
cui |
|- Unit |
| 10 |
4 9
|
cfv |
|- ( Unit ` w ) |
| 11 |
|
c0g |
|- 0g |
| 12 |
4 11
|
cfv |
|- ( 0g ` w ) |
| 13 |
12
|
csn |
|- { ( 0g ` w ) } |
| 14 |
10 13
|
cun |
|- ( ( Unit ` w ) u. { ( 0g ` w ) } ) |
| 15 |
8 14
|
cdif |
|- ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) |
| 16 |
|
vx |
|- x |
| 17 |
|
vy |
|- y |
| 18 |
|
cdsr |
|- ||r |
| 19 |
4 18
|
cfv |
|- ( ||r ` w ) |
| 20 |
|
vd |
|- d |
| 21 |
7
|
cv |
|- p |
| 22 |
20
|
cv |
|- d |
| 23 |
16
|
cv |
|- x |
| 24 |
|
cmulr |
|- .r |
| 25 |
4 24
|
cfv |
|- ( .r ` w ) |
| 26 |
17
|
cv |
|- y |
| 27 |
23 26 25
|
co |
|- ( x ( .r ` w ) y ) |
| 28 |
21 27 22
|
wbr |
|- p d ( x ( .r ` w ) y ) |
| 29 |
21 23 22
|
wbr |
|- p d x |
| 30 |
21 26 22
|
wbr |
|- p d y |
| 31 |
29 30
|
wo |
|- ( p d x \/ p d y ) |
| 32 |
28 31
|
wi |
|- ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) |
| 33 |
32 20 19
|
wsbc |
|- [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) |
| 34 |
33 17 8
|
wral |
|- A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) |
| 35 |
34 16 8
|
wral |
|- A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) |
| 36 |
35 7 15
|
crab |
|- { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } |
| 37 |
6 5 36
|
csb |
|- [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } |
| 38 |
1 2 37
|
cmpt |
|- ( w e. _V |-> [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } ) |
| 39 |
0 38
|
wceq |
|- RPrime = ( w e. _V |-> [_ ( Base ` w ) / b ]_ { p e. ( b \ ( ( Unit ` w ) u. { ( 0g ` w ) } ) ) | A. x e. b A. y e. b [. ( ||r ` w ) / d ]. ( p d ( x ( .r ` w ) y ) -> ( p d x \/ p d y ) ) } ) |