Metamath Proof Explorer
Description: Define the set of sigma-algebra on a given set. (Contributed by Glauco
Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Assertion |
df-salon |
⊢ SalOn = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥 } ) |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csalon |
⊢ SalOn |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
csalg |
⊢ SAlg |
| 5 |
3
|
cv |
⊢ 𝑠 |
| 6 |
5
|
cuni |
⊢ ∪ 𝑠 |
| 7 |
1
|
cv |
⊢ 𝑥 |
| 8 |
6 7
|
wceq |
⊢ ∪ 𝑠 = 𝑥 |
| 9 |
8 3 4
|
crab |
⊢ { 𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥 } |
| 10 |
1 2 9
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥 } ) |
| 11 |
0 10
|
wceq |
⊢ SalOn = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥 } ) |