Metamath Proof Explorer
Description: Define the set of sigma-algebra on a given set. (Contributed by Glauco
Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Assertion |
df-salon |
⊢ SalOn = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥 } ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
csalon |
⊢ SalOn |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
csalg |
⊢ SAlg |
5 |
3
|
cv |
⊢ 𝑠 |
6 |
5
|
cuni |
⊢ ∪ 𝑠 |
7 |
1
|
cv |
⊢ 𝑥 |
8 |
6 7
|
wceq |
⊢ ∪ 𝑠 = 𝑥 |
9 |
8 3 4
|
crab |
⊢ { 𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥 } |
10 |
1 2 9
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥 } ) |
11 |
0 10
|
wceq |
⊢ SalOn = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥 } ) |