Metamath Proof Explorer


Definition df-salon

Description: Define the set of sigma-algebra on a given set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion df-salon SalOn = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ 𝑠 = 𝑥 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csalon SalOn
1 vx 𝑥
2 cvv V
3 vs 𝑠
4 csalg SAlg
5 3 cv 𝑠
6 5 cuni 𝑠
7 1 cv 𝑥
8 6 7 wceq 𝑠 = 𝑥
9 8 3 4 crab { 𝑠 ∈ SAlg ∣ 𝑠 = 𝑥 }
10 1 2 9 cmpt ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ 𝑠 = 𝑥 } )
11 0 10 wceq SalOn = ( 𝑥 ∈ V ↦ { 𝑠 ∈ SAlg ∣ 𝑠 = 𝑥 } )