Metamath Proof Explorer
		
		
		
		Description:  Define the set of sigma-algebra on a given set.  (Contributed by Glauco
       Siliprandi, 17-Aug-2020)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | df-salon | ⊢  SalOn  =  ( 𝑥  ∈  V  ↦  { 𝑠  ∈  SAlg  ∣  ∪  𝑠  =  𝑥 } ) | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csalon | ⊢ SalOn | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 |  | csalg | ⊢ SAlg | 
						
							| 5 | 3 | cv | ⊢ 𝑠 | 
						
							| 6 | 5 | cuni | ⊢ ∪  𝑠 | 
						
							| 7 | 1 | cv | ⊢ 𝑥 | 
						
							| 8 | 6 7 | wceq | ⊢ ∪  𝑠  =  𝑥 | 
						
							| 9 | 8 3 4 | crab | ⊢ { 𝑠  ∈  SAlg  ∣  ∪  𝑠  =  𝑥 } | 
						
							| 10 | 1 2 9 | cmpt | ⊢ ( 𝑥  ∈  V  ↦  { 𝑠  ∈  SAlg  ∣  ∪  𝑠  =  𝑥 } ) | 
						
							| 11 | 0 10 | wceq | ⊢ SalOn  =  ( 𝑥  ∈  V  ↦  { 𝑠  ∈  SAlg  ∣  ∪  𝑠  =  𝑥 } ) |