Metamath Proof Explorer


Definition df-sate

Description: A simplified version of the satisfaction predicate, using the standard membership relation and eliminating the extra variable n . (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-sate Sat = ( 𝑚 ∈ V , 𝑢 ∈ V ↦ ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csate Sat
1 vm 𝑚
2 cvv V
3 vu 𝑢
4 1 cv 𝑚
5 csat Sat
6 cep E
7 4 4 cxp ( 𝑚 × 𝑚 )
8 6 7 cin ( E ∩ ( 𝑚 × 𝑚 ) )
9 4 8 5 co ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) )
10 com ω
11 10 9 cfv ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω )
12 3 cv 𝑢
13 12 11 cfv ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 )
14 1 3 2 2 13 cmpo ( 𝑚 ∈ V , 𝑢 ∈ V ↦ ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) )
15 0 14 wceq Sat = ( 𝑚 ∈ V , 𝑢 ∈ V ↦ ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) )