| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cscmatalt |
⊢ ScMatALT |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cfn |
⊢ Fin |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
cvv |
⊢ V |
| 5 |
1
|
cv |
⊢ 𝑛 |
| 6 |
|
cmat |
⊢ Mat |
| 7 |
3
|
cv |
⊢ 𝑟 |
| 8 |
5 7 6
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
| 9 |
|
va |
⊢ 𝑎 |
| 10 |
9
|
cv |
⊢ 𝑎 |
| 11 |
|
cress |
⊢ ↾s |
| 12 |
|
vm |
⊢ 𝑚 |
| 13 |
|
cbs |
⊢ Base |
| 14 |
10 13
|
cfv |
⊢ ( Base ‘ 𝑎 ) |
| 15 |
|
vc |
⊢ 𝑐 |
| 16 |
7 13
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 17 |
|
vi |
⊢ 𝑖 |
| 18 |
|
vj |
⊢ 𝑗 |
| 19 |
17
|
cv |
⊢ 𝑖 |
| 20 |
12
|
cv |
⊢ 𝑚 |
| 21 |
18
|
cv |
⊢ 𝑗 |
| 22 |
19 21 20
|
co |
⊢ ( 𝑖 𝑚 𝑗 ) |
| 23 |
19 21
|
wceq |
⊢ 𝑖 = 𝑗 |
| 24 |
15
|
cv |
⊢ 𝑐 |
| 25 |
|
c0g |
⊢ 0g |
| 26 |
7 25
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
| 27 |
23 24 26
|
cif |
⊢ if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
| 28 |
22 27
|
wceq |
⊢ ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
| 29 |
28 18 5
|
wral |
⊢ ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
| 30 |
29 17 5
|
wral |
⊢ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
| 31 |
30 15 16
|
wrex |
⊢ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
| 32 |
31 12 14
|
crab |
⊢ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } |
| 33 |
10 32 11
|
co |
⊢ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } ) |
| 34 |
9 8 33
|
csb |
⊢ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } ) |
| 35 |
1 3 2 4 34
|
cmpo |
⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } ) ) |
| 36 |
0 35
|
wceq |
⊢ ScMatALT = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } ) ) |