Step |
Hyp |
Ref |
Expression |
0 |
|
cscmatalt |
⊢ ScMatALT |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cfn |
⊢ Fin |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
cvv |
⊢ V |
5 |
1
|
cv |
⊢ 𝑛 |
6 |
|
cmat |
⊢ Mat |
7 |
3
|
cv |
⊢ 𝑟 |
8 |
5 7 6
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
9 |
|
va |
⊢ 𝑎 |
10 |
9
|
cv |
⊢ 𝑎 |
11 |
|
cress |
⊢ ↾s |
12 |
|
vm |
⊢ 𝑚 |
13 |
|
cbs |
⊢ Base |
14 |
10 13
|
cfv |
⊢ ( Base ‘ 𝑎 ) |
15 |
|
vc |
⊢ 𝑐 |
16 |
7 13
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
17 |
|
vi |
⊢ 𝑖 |
18 |
|
vj |
⊢ 𝑗 |
19 |
17
|
cv |
⊢ 𝑖 |
20 |
12
|
cv |
⊢ 𝑚 |
21 |
18
|
cv |
⊢ 𝑗 |
22 |
19 21 20
|
co |
⊢ ( 𝑖 𝑚 𝑗 ) |
23 |
19 21
|
wceq |
⊢ 𝑖 = 𝑗 |
24 |
15
|
cv |
⊢ 𝑐 |
25 |
|
c0g |
⊢ 0g |
26 |
7 25
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
27 |
23 24 26
|
cif |
⊢ if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
28 |
22 27
|
wceq |
⊢ ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
29 |
28 18 5
|
wral |
⊢ ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
30 |
29 17 5
|
wral |
⊢ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
31 |
30 15 16
|
wrex |
⊢ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) |
32 |
31 12 14
|
crab |
⊢ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } |
33 |
10 32 11
|
co |
⊢ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } ) |
34 |
9 8 33
|
csb |
⊢ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } ) |
35 |
1 3 2 4 34
|
cmpo |
⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } ) ) |
36 |
0 35
|
wceq |
⊢ ScMatALT = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑟 ) ) } ) ) |