Metamath Proof Explorer


Definition df-scmatalt

Description: Define the algebra of n x n scalar matrices over a set (usually a ring) r, see definition in Connell p. 57: "Ascalar matrix is a diagonal matrix for which all the diagonal terms are equal, i.e., a matrix of the form cI_n". (Contributed by AV, 8-Dec-2019)

Ref Expression
Assertion df-scmatalt ScMatALT = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖𝑛𝑗𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cscmatalt ScMatALT
1 vn 𝑛
2 cfn Fin
3 vr 𝑟
4 cvv V
5 1 cv 𝑛
6 cmat Mat
7 3 cv 𝑟
8 5 7 6 co ( 𝑛 Mat 𝑟 )
9 va 𝑎
10 9 cv 𝑎
11 cress s
12 vm 𝑚
13 cbs Base
14 10 13 cfv ( Base ‘ 𝑎 )
15 vc 𝑐
16 7 13 cfv ( Base ‘ 𝑟 )
17 vi 𝑖
18 vj 𝑗
19 17 cv 𝑖
20 12 cv 𝑚
21 18 cv 𝑗
22 19 21 20 co ( 𝑖 𝑚 𝑗 )
23 19 21 wceq 𝑖 = 𝑗
24 15 cv 𝑐
25 c0g 0g
26 7 25 cfv ( 0g𝑟 )
27 23 24 26 cif if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) )
28 22 27 wceq ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) )
29 28 18 5 wral 𝑗𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) )
30 29 17 5 wral 𝑖𝑛𝑗𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) )
31 30 15 16 wrex 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖𝑛𝑗𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) )
32 31 12 14 crab { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖𝑛𝑗𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) ) }
33 10 32 11 co ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖𝑛𝑗𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) ) } )
34 9 8 33 csb ( 𝑛 Mat 𝑟 ) / 𝑎 ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖𝑛𝑗𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) ) } )
35 1 3 2 4 34 cmpo ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖𝑛𝑗𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) ) } ) )
36 0 35 wceq ScMatALT = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) ∀ 𝑖𝑛𝑗𝑛 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g𝑟 ) ) } ) )