Step |
Hyp |
Ref |
Expression |
1 |
|
dmatALTval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
dmatALTval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
dmatALTval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
dmatALTval.d |
⊢ 𝐷 = ( 𝑁 DMatALT 𝑅 ) |
5 |
|
ovexd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) ∈ V ) |
6 |
|
id |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → 𝑎 = ( 𝑛 Mat 𝑟 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → ( Base ‘ 𝑎 ) = ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ) |
8 |
7
|
rabeqdv |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } = { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) |
9 |
6 8
|
oveq12d |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) = ( ( 𝑛 Mat 𝑟 ) ↾s { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ∧ 𝑎 = ( 𝑛 Mat 𝑟 ) ) → ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) = ( ( 𝑛 Mat 𝑟 ) ↾s { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) ) |
11 |
5 10
|
csbied |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) = ( ( 𝑛 Mat 𝑟 ) ↾s { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) ) |
12 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
13 |
12 1
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = 𝐴 ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ 𝐴 ) ) |
15 |
14 2
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
16 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) |
17 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
18 |
17 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
19 |
18
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 0g ‘ 𝑟 ) = 0 ) |
20 |
19
|
eqeq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ↔ ( 𝑖 𝑚 𝑗 ) = 0 ) ) |
21 |
20
|
imbi2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) ↔ ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
22 |
16 21
|
raleqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) ↔ ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
23 |
16 22
|
raleqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
24 |
15 23
|
rabeqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } = { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
25 |
13 24
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑛 Mat 𝑟 ) ↾s { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) = ( 𝐴 ↾s { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) ) |
26 |
11 25
|
eqtrd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) = ( 𝐴 ↾s { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) ) |
27 |
|
df-dmatalt |
⊢ DMatALT = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ( 𝑎 ↾s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) ) |
28 |
|
ovex |
⊢ ( 𝐴 ↾s { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) ∈ V |
29 |
26 27 28
|
ovmpoa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑁 DMatALT 𝑅 ) = ( 𝐴 ↾s { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) ) |
30 |
4 29
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → 𝐷 = ( 𝐴 ↾s { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) ) |