Metamath Proof Explorer


Theorem dmatALTval

Description: The algebra of N x N diagonal matrices over a ring R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatALTval.a A = N Mat R
dmatALTval.b B = Base A
dmatALTval.0 0 ˙ = 0 R
dmatALTval.d D = N DMatALT R
Assertion dmatALTval N Fin R V D = A 𝑠 m B | i N j N i j i m j = 0 ˙

Proof

Step Hyp Ref Expression
1 dmatALTval.a A = N Mat R
2 dmatALTval.b B = Base A
3 dmatALTval.0 0 ˙ = 0 R
4 dmatALTval.d D = N DMatALT R
5 ovexd n = N r = R n Mat r V
6 id a = n Mat r a = n Mat r
7 fveq2 a = n Mat r Base a = Base n Mat r
8 7 rabeqdv a = n Mat r m Base a | i n j n i j i m j = 0 r = m Base n Mat r | i n j n i j i m j = 0 r
9 6 8 oveq12d a = n Mat r a 𝑠 m Base a | i n j n i j i m j = 0 r = n Mat r 𝑠 m Base n Mat r | i n j n i j i m j = 0 r
10 9 adantl n = N r = R a = n Mat r a 𝑠 m Base a | i n j n i j i m j = 0 r = n Mat r 𝑠 m Base n Mat r | i n j n i j i m j = 0 r
11 5 10 csbied n = N r = R n Mat r / a a 𝑠 m Base a | i n j n i j i m j = 0 r = n Mat r 𝑠 m Base n Mat r | i n j n i j i m j = 0 r
12 oveq12 n = N r = R n Mat r = N Mat R
13 12 1 eqtr4di n = N r = R n Mat r = A
14 13 fveq2d n = N r = R Base n Mat r = Base A
15 14 2 eqtr4di n = N r = R Base n Mat r = B
16 simpl n = N r = R n = N
17 fveq2 r = R 0 r = 0 R
18 17 3 eqtr4di r = R 0 r = 0 ˙
19 18 adantl n = N r = R 0 r = 0 ˙
20 19 eqeq2d n = N r = R i m j = 0 r i m j = 0 ˙
21 20 imbi2d n = N r = R i j i m j = 0 r i j i m j = 0 ˙
22 16 21 raleqbidv n = N r = R j n i j i m j = 0 r j N i j i m j = 0 ˙
23 16 22 raleqbidv n = N r = R i n j n i j i m j = 0 r i N j N i j i m j = 0 ˙
24 15 23 rabeqbidv n = N r = R m Base n Mat r | i n j n i j i m j = 0 r = m B | i N j N i j i m j = 0 ˙
25 13 24 oveq12d n = N r = R n Mat r 𝑠 m Base n Mat r | i n j n i j i m j = 0 r = A 𝑠 m B | i N j N i j i m j = 0 ˙
26 11 25 eqtrd n = N r = R n Mat r / a a 𝑠 m Base a | i n j n i j i m j = 0 r = A 𝑠 m B | i N j N i j i m j = 0 ˙
27 df-dmatalt DMatALT = n Fin , r V n Mat r / a a 𝑠 m Base a | i n j n i j i m j = 0 r
28 ovex A 𝑠 m B | i N j N i j i m j = 0 ˙ V
29 26 27 28 ovmpoa N Fin R V N DMatALT R = A 𝑠 m B | i N j N i j i m j = 0 ˙
30 4 29 syl5eq N Fin R V D = A 𝑠 m B | i N j N i j i m j = 0 ˙