| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatALTval.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | dmatALTval.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | dmatALTval.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | dmatALTval.d |  |-  D = ( N DMatALT R ) | 
						
							| 5 |  | ovexd |  |-  ( ( n = N /\ r = R ) -> ( n Mat r ) e. _V ) | 
						
							| 6 |  | id |  |-  ( a = ( n Mat r ) -> a = ( n Mat r ) ) | 
						
							| 7 |  | fveq2 |  |-  ( a = ( n Mat r ) -> ( Base ` a ) = ( Base ` ( n Mat r ) ) ) | 
						
							| 8 | 7 | rabeqdv |  |-  ( a = ( n Mat r ) -> { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } = { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) | 
						
							| 9 | 6 8 | oveq12d |  |-  ( a = ( n Mat r ) -> ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( ( n Mat r ) |`s { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( n = N /\ r = R ) /\ a = ( n Mat r ) ) -> ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( ( n Mat r ) |`s { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) | 
						
							| 11 | 5 10 | csbied |  |-  ( ( n = N /\ r = R ) -> [_ ( n Mat r ) / a ]_ ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( ( n Mat r ) |`s { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) | 
						
							| 12 |  | oveq12 |  |-  ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) ) | 
						
							| 13 | 12 1 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( n Mat r ) = A ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = ( Base ` A ) ) | 
						
							| 15 | 14 2 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = B ) | 
						
							| 16 |  | simpl |  |-  ( ( n = N /\ r = R ) -> n = N ) | 
						
							| 17 |  | fveq2 |  |-  ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) | 
						
							| 18 | 17 3 | eqtr4di |  |-  ( r = R -> ( 0g ` r ) = .0. ) | 
						
							| 19 | 18 | adantl |  |-  ( ( n = N /\ r = R ) -> ( 0g ` r ) = .0. ) | 
						
							| 20 | 19 | eqeq2d |  |-  ( ( n = N /\ r = R ) -> ( ( i m j ) = ( 0g ` r ) <-> ( i m j ) = .0. ) ) | 
						
							| 21 | 20 | imbi2d |  |-  ( ( n = N /\ r = R ) -> ( ( i =/= j -> ( i m j ) = ( 0g ` r ) ) <-> ( i =/= j -> ( i m j ) = .0. ) ) ) | 
						
							| 22 | 16 21 | raleqbidv |  |-  ( ( n = N /\ r = R ) -> ( A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) <-> A. j e. N ( i =/= j -> ( i m j ) = .0. ) ) ) | 
						
							| 23 | 16 22 | raleqbidv |  |-  ( ( n = N /\ r = R ) -> ( A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) <-> A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) ) ) | 
						
							| 24 | 15 23 | rabeqbidv |  |-  ( ( n = N /\ r = R ) -> { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) | 
						
							| 25 | 13 24 | oveq12d |  |-  ( ( n = N /\ r = R ) -> ( ( n Mat r ) |`s { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) ) | 
						
							| 26 | 11 25 | eqtrd |  |-  ( ( n = N /\ r = R ) -> [_ ( n Mat r ) / a ]_ ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) ) | 
						
							| 27 |  | df-dmatalt |  |-  DMatALT = ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) | 
						
							| 28 |  | ovex |  |-  ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) e. _V | 
						
							| 29 | 26 27 28 | ovmpoa |  |-  ( ( N e. Fin /\ R e. _V ) -> ( N DMatALT R ) = ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) ) | 
						
							| 30 | 4 29 | eqtrid |  |-  ( ( N e. Fin /\ R e. _V ) -> D = ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) ) |