| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmatALTval.a |
|- A = ( N Mat R ) |
| 2 |
|
dmatALTval.b |
|- B = ( Base ` A ) |
| 3 |
|
dmatALTval.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
dmatALTval.d |
|- D = ( N DMatALT R ) |
| 5 |
|
ovexd |
|- ( ( n = N /\ r = R ) -> ( n Mat r ) e. _V ) |
| 6 |
|
id |
|- ( a = ( n Mat r ) -> a = ( n Mat r ) ) |
| 7 |
|
fveq2 |
|- ( a = ( n Mat r ) -> ( Base ` a ) = ( Base ` ( n Mat r ) ) ) |
| 8 |
7
|
rabeqdv |
|- ( a = ( n Mat r ) -> { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } = { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) |
| 9 |
6 8
|
oveq12d |
|- ( a = ( n Mat r ) -> ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( ( n Mat r ) |`s { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) |
| 10 |
9
|
adantl |
|- ( ( ( n = N /\ r = R ) /\ a = ( n Mat r ) ) -> ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( ( n Mat r ) |`s { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) |
| 11 |
5 10
|
csbied |
|- ( ( n = N /\ r = R ) -> [_ ( n Mat r ) / a ]_ ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( ( n Mat r ) |`s { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) |
| 12 |
|
oveq12 |
|- ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) ) |
| 13 |
12 1
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( n Mat r ) = A ) |
| 14 |
13
|
fveq2d |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = ( Base ` A ) ) |
| 15 |
14 2
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = B ) |
| 16 |
|
simpl |
|- ( ( n = N /\ r = R ) -> n = N ) |
| 17 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
| 18 |
17 3
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
| 19 |
18
|
adantl |
|- ( ( n = N /\ r = R ) -> ( 0g ` r ) = .0. ) |
| 20 |
19
|
eqeq2d |
|- ( ( n = N /\ r = R ) -> ( ( i m j ) = ( 0g ` r ) <-> ( i m j ) = .0. ) ) |
| 21 |
20
|
imbi2d |
|- ( ( n = N /\ r = R ) -> ( ( i =/= j -> ( i m j ) = ( 0g ` r ) ) <-> ( i =/= j -> ( i m j ) = .0. ) ) ) |
| 22 |
16 21
|
raleqbidv |
|- ( ( n = N /\ r = R ) -> ( A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) <-> A. j e. N ( i =/= j -> ( i m j ) = .0. ) ) ) |
| 23 |
16 22
|
raleqbidv |
|- ( ( n = N /\ r = R ) -> ( A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) <-> A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) ) ) |
| 24 |
15 23
|
rabeqbidv |
|- ( ( n = N /\ r = R ) -> { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) |
| 25 |
13 24
|
oveq12d |
|- ( ( n = N /\ r = R ) -> ( ( n Mat r ) |`s { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) ) |
| 26 |
11 25
|
eqtrd |
|- ( ( n = N /\ r = R ) -> [_ ( n Mat r ) / a ]_ ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) = ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) ) |
| 27 |
|
df-dmatalt |
|- DMatALT = ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) |
| 28 |
|
ovex |
|- ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) e. _V |
| 29 |
26 27 28
|
ovmpoa |
|- ( ( N e. Fin /\ R e. _V ) -> ( N DMatALT R ) = ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) ) |
| 30 |
4 29
|
eqtrid |
|- ( ( N e. Fin /\ R e. _V ) -> D = ( A |`s { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) ) |