Step |
Hyp |
Ref |
Expression |
0 |
|
cdmatalt |
|- DMatALT |
1 |
|
vn |
|- n |
2 |
|
cfn |
|- Fin |
3 |
|
vr |
|- r |
4 |
|
cvv |
|- _V |
5 |
1
|
cv |
|- n |
6 |
|
cmat |
|- Mat |
7 |
3
|
cv |
|- r |
8 |
5 7 6
|
co |
|- ( n Mat r ) |
9 |
|
va |
|- a |
10 |
9
|
cv |
|- a |
11 |
|
cress |
|- |`s |
12 |
|
vm |
|- m |
13 |
|
cbs |
|- Base |
14 |
10 13
|
cfv |
|- ( Base ` a ) |
15 |
|
vi |
|- i |
16 |
|
vj |
|- j |
17 |
15
|
cv |
|- i |
18 |
16
|
cv |
|- j |
19 |
17 18
|
wne |
|- i =/= j |
20 |
12
|
cv |
|- m |
21 |
17 18 20
|
co |
|- ( i m j ) |
22 |
|
c0g |
|- 0g |
23 |
7 22
|
cfv |
|- ( 0g ` r ) |
24 |
21 23
|
wceq |
|- ( i m j ) = ( 0g ` r ) |
25 |
19 24
|
wi |
|- ( i =/= j -> ( i m j ) = ( 0g ` r ) ) |
26 |
25 16 5
|
wral |
|- A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) |
27 |
26 15 5
|
wral |
|- A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) |
28 |
27 12 14
|
crab |
|- { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } |
29 |
10 28 11
|
co |
|- ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) |
30 |
9 8 29
|
csb |
|- [_ ( n Mat r ) / a ]_ ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) |
31 |
1 3 2 4 30
|
cmpo |
|- ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) |
32 |
0 31
|
wceq |
|- DMatALT = ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ ( a |`s { m e. ( Base ` a ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) |