Metamath Proof Explorer


Definition df-dmatalt

Description: Define the set of n x n diagonal (square) matrices over a set (usually a ring) r, see definition in Roman p. 4 or Definition 3.12 in Hefferon p. 240. (Contributed by AV, 8-Dec-2019)

Ref Expression
Assertion df-dmatalt DMatALT = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdmatalt DMatALT
1 vn 𝑛
2 cfn Fin
3 vr 𝑟
4 cvv V
5 1 cv 𝑛
6 cmat Mat
7 3 cv 𝑟
8 5 7 6 co ( 𝑛 Mat 𝑟 )
9 va 𝑎
10 9 cv 𝑎
11 cress s
12 vm 𝑚
13 cbs Base
14 10 13 cfv ( Base ‘ 𝑎 )
15 vi 𝑖
16 vj 𝑗
17 15 cv 𝑖
18 16 cv 𝑗
19 17 18 wne 𝑖𝑗
20 12 cv 𝑚
21 17 18 20 co ( 𝑖 𝑚 𝑗 )
22 c0g 0g
23 7 22 cfv ( 0g𝑟 )
24 21 23 wceq ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 )
25 19 24 wi ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) )
26 25 16 5 wral 𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) )
27 26 15 5 wral 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) )
28 27 12 14 crab { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) }
29 10 28 11 co ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } )
30 9 8 29 csb ( 𝑛 Mat 𝑟 ) / 𝑎 ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } )
31 1 3 2 4 30 cmpo ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } ) )
32 0 31 wceq DMatALT = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( 𝑎s { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } ) )