| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							csgrp | 
							⊢ Smgrp  | 
						
						
							| 1 | 
							
								
							 | 
							vg | 
							⊢ 𝑔  | 
						
						
							| 2 | 
							
								
							 | 
							cmgm | 
							⊢ Mgm  | 
						
						
							| 3 | 
							
								
							 | 
							cbs | 
							⊢ Base  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							⊢ 𝑔  | 
						
						
							| 5 | 
							
								4 3
							 | 
							cfv | 
							⊢ ( Base ‘ 𝑔 )  | 
						
						
							| 6 | 
							
								
							 | 
							vb | 
							⊢ 𝑏  | 
						
						
							| 7 | 
							
								
							 | 
							cplusg | 
							⊢ +g  | 
						
						
							| 8 | 
							
								4 7
							 | 
							cfv | 
							⊢ ( +g ‘ 𝑔 )  | 
						
						
							| 9 | 
							
								
							 | 
							vo | 
							⊢ 𝑜  | 
						
						
							| 10 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 11 | 
							
								6
							 | 
							cv | 
							⊢ 𝑏  | 
						
						
							| 12 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 13 | 
							
								
							 | 
							vz | 
							⊢ 𝑧  | 
						
						
							| 14 | 
							
								10
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 15 | 
							
								9
							 | 
							cv | 
							⊢ 𝑜  | 
						
						
							| 16 | 
							
								12
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 17 | 
							
								14 16 15
							 | 
							co | 
							⊢ ( 𝑥 𝑜 𝑦 )  | 
						
						
							| 18 | 
							
								13
							 | 
							cv | 
							⊢ 𝑧  | 
						
						
							| 19 | 
							
								17 18 15
							 | 
							co | 
							⊢ ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 )  | 
						
						
							| 20 | 
							
								16 18 15
							 | 
							co | 
							⊢ ( 𝑦 𝑜 𝑧 )  | 
						
						
							| 21 | 
							
								14 20 15
							 | 
							co | 
							⊢ ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							wceq | 
							⊢ ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 )  =  ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) )  | 
						
						
							| 23 | 
							
								22 13 11
							 | 
							wral | 
							⊢ ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 )  =  ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) )  | 
						
						
							| 24 | 
							
								23 12 11
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 )  =  ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) )  | 
						
						
							| 25 | 
							
								24 10 11
							 | 
							wral | 
							⊢ ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 )  =  ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) )  | 
						
						
							| 26 | 
							
								25 9 8
							 | 
							wsbc | 
							⊢ [ ( +g ‘ 𝑔 )  /  𝑜 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 )  =  ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) )  | 
						
						
							| 27 | 
							
								26 6 5
							 | 
							wsbc | 
							⊢ [ ( Base ‘ 𝑔 )  /  𝑏 ] [ ( +g ‘ 𝑔 )  /  𝑜 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 )  =  ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) )  | 
						
						
							| 28 | 
							
								27 1 2
							 | 
							crab | 
							⊢ { 𝑔  ∈  Mgm  ∣  [ ( Base ‘ 𝑔 )  /  𝑏 ] [ ( +g ‘ 𝑔 )  /  𝑜 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 )  =  ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) }  | 
						
						
							| 29 | 
							
								0 28
							 | 
							wceq | 
							⊢ Smgrp  =  { 𝑔  ∈  Mgm  ∣  [ ( Base ‘ 𝑔 )  /  𝑏 ] [ ( +g ‘ 𝑔 )  /  𝑜 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 )  =  ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) }  |