Step |
Hyp |
Ref |
Expression |
0 |
|
cslmd |
⊢ SLMod |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
ccmn |
⊢ CMnd |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑔 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
6 |
|
vv |
⊢ 𝑣 |
7 |
|
cplusg |
⊢ +g |
8 |
4 7
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
9 |
|
va |
⊢ 𝑎 |
10 |
|
cvsca |
⊢ ·𝑠 |
11 |
4 10
|
cfv |
⊢ ( ·𝑠 ‘ 𝑔 ) |
12 |
|
vs |
⊢ 𝑠 |
13 |
|
csca |
⊢ Scalar |
14 |
4 13
|
cfv |
⊢ ( Scalar ‘ 𝑔 ) |
15 |
|
vf |
⊢ 𝑓 |
16 |
15
|
cv |
⊢ 𝑓 |
17 |
16 3
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
18 |
|
vk |
⊢ 𝑘 |
19 |
16 7
|
cfv |
⊢ ( +g ‘ 𝑓 ) |
20 |
|
vp |
⊢ 𝑝 |
21 |
|
cmulr |
⊢ .r |
22 |
16 21
|
cfv |
⊢ ( .r ‘ 𝑓 ) |
23 |
|
vt |
⊢ 𝑡 |
24 |
|
csrg |
⊢ SRing |
25 |
16 24
|
wcel |
⊢ 𝑓 ∈ SRing |
26 |
|
vq |
⊢ 𝑞 |
27 |
18
|
cv |
⊢ 𝑘 |
28 |
|
vr |
⊢ 𝑟 |
29 |
|
vx |
⊢ 𝑥 |
30 |
6
|
cv |
⊢ 𝑣 |
31 |
|
vw |
⊢ 𝑤 |
32 |
28
|
cv |
⊢ 𝑟 |
33 |
12
|
cv |
⊢ 𝑠 |
34 |
31
|
cv |
⊢ 𝑤 |
35 |
32 34 33
|
co |
⊢ ( 𝑟 𝑠 𝑤 ) |
36 |
35 30
|
wcel |
⊢ ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 |
37 |
9
|
cv |
⊢ 𝑎 |
38 |
29
|
cv |
⊢ 𝑥 |
39 |
34 38 37
|
co |
⊢ ( 𝑤 𝑎 𝑥 ) |
40 |
32 39 33
|
co |
⊢ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) |
41 |
32 38 33
|
co |
⊢ ( 𝑟 𝑠 𝑥 ) |
42 |
35 41 37
|
co |
⊢ ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) |
43 |
40 42
|
wceq |
⊢ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) |
44 |
26
|
cv |
⊢ 𝑞 |
45 |
20
|
cv |
⊢ 𝑝 |
46 |
44 32 45
|
co |
⊢ ( 𝑞 𝑝 𝑟 ) |
47 |
46 34 33
|
co |
⊢ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) |
48 |
44 34 33
|
co |
⊢ ( 𝑞 𝑠 𝑤 ) |
49 |
48 35 37
|
co |
⊢ ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) |
50 |
47 49
|
wceq |
⊢ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) |
51 |
36 43 50
|
w3a |
⊢ ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) |
52 |
23
|
cv |
⊢ 𝑡 |
53 |
44 32 52
|
co |
⊢ ( 𝑞 𝑡 𝑟 ) |
54 |
53 34 33
|
co |
⊢ ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) |
55 |
44 35 33
|
co |
⊢ ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) |
56 |
54 55
|
wceq |
⊢ ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) |
57 |
|
cur |
⊢ 1r |
58 |
16 57
|
cfv |
⊢ ( 1r ‘ 𝑓 ) |
59 |
58 34 33
|
co |
⊢ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) |
60 |
59 34
|
wceq |
⊢ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 |
61 |
|
c0g |
⊢ 0g |
62 |
16 61
|
cfv |
⊢ ( 0g ‘ 𝑓 ) |
63 |
62 34 33
|
co |
⊢ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) |
64 |
4 61
|
cfv |
⊢ ( 0g ‘ 𝑔 ) |
65 |
63 64
|
wceq |
⊢ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) |
66 |
56 60 65
|
w3a |
⊢ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) |
67 |
51 66
|
wa |
⊢ ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) |
68 |
67 31 30
|
wral |
⊢ ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) |
69 |
68 29 30
|
wral |
⊢ ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) |
70 |
69 28 27
|
wral |
⊢ ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) |
71 |
70 26 27
|
wral |
⊢ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) |
72 |
25 71
|
wa |
⊢ ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) |
73 |
72 23 22
|
wsbc |
⊢ [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) |
74 |
73 20 19
|
wsbc |
⊢ [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) |
75 |
74 18 17
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) |
76 |
75 15 14
|
wsbc |
⊢ [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) |
77 |
76 12 11
|
wsbc |
⊢ [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) |
78 |
77 9 8
|
wsbc |
⊢ [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) |
79 |
78 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) |
80 |
79 1 2
|
crab |
⊢ { 𝑔 ∈ CMnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) } |
81 |
0 80
|
wceq |
⊢ SLMod = { 𝑔 ∈ CMnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g ‘ 𝑓 ) 𝑠 𝑤 ) = ( 0g ‘ 𝑔 ) ) ) ) } |