Metamath Proof Explorer


Definition df-slmd

Description: Define the class of all (left) modules over semirings, i.e. semimodules, which are generalizations of left modules. A semimodule is a commutative monoid (=vectors) together with a semiring (=scalars) and a left scalar product connecting them. ( 0 , +oo ) for example is not a full fledged left module, but is a semimodule. Definition of Golan p. 149. (Contributed by Thierry Arnoux, 21-Mar-2018)

Ref Expression
Assertion df-slmd SLMod = { 𝑔 ∈ CMnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑎 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cslmd SLMod
1 vg 𝑔
2 ccmn CMnd
3 cbs Base
4 1 cv 𝑔
5 4 3 cfv ( Base ‘ 𝑔 )
6 vv 𝑣
7 cplusg +g
8 4 7 cfv ( +g𝑔 )
9 va 𝑎
10 cvsca ·𝑠
11 4 10 cfv ( ·𝑠𝑔 )
12 vs 𝑠
13 csca Scalar
14 4 13 cfv ( Scalar ‘ 𝑔 )
15 vf 𝑓
16 15 cv 𝑓
17 16 3 cfv ( Base ‘ 𝑓 )
18 vk 𝑘
19 16 7 cfv ( +g𝑓 )
20 vp 𝑝
21 cmulr .r
22 16 21 cfv ( .r𝑓 )
23 vt 𝑡
24 csrg SRing
25 16 24 wcel 𝑓 ∈ SRing
26 vq 𝑞
27 18 cv 𝑘
28 vr 𝑟
29 vx 𝑥
30 6 cv 𝑣
31 vw 𝑤
32 28 cv 𝑟
33 12 cv 𝑠
34 31 cv 𝑤
35 32 34 33 co ( 𝑟 𝑠 𝑤 )
36 35 30 wcel ( 𝑟 𝑠 𝑤 ) ∈ 𝑣
37 9 cv 𝑎
38 29 cv 𝑥
39 34 38 37 co ( 𝑤 𝑎 𝑥 )
40 32 39 33 co ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )
41 32 38 33 co ( 𝑟 𝑠 𝑥 )
42 35 41 37 co ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )
43 40 42 wceq ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )
44 26 cv 𝑞
45 20 cv 𝑝
46 44 32 45 co ( 𝑞 𝑝 𝑟 )
47 46 34 33 co ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )
48 44 34 33 co ( 𝑞 𝑠 𝑤 )
49 48 35 37 co ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) )
50 47 49 wceq ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) )
51 36 43 50 w3a ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )
52 23 cv 𝑡
53 44 32 52 co ( 𝑞 𝑡 𝑟 )
54 53 34 33 co ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )
55 44 35 33 co ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )
56 54 55 wceq ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )
57 cur 1r
58 16 57 cfv ( 1r𝑓 )
59 58 34 33 co ( ( 1r𝑓 ) 𝑠 𝑤 )
60 59 34 wceq ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤
61 c0g 0g
62 16 61 cfv ( 0g𝑓 )
63 62 34 33 co ( ( 0g𝑓 ) 𝑠 𝑤 )
64 4 61 cfv ( 0g𝑔 )
65 63 64 wceq ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 )
66 56 60 65 w3a ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) )
67 51 66 wa ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) )
68 67 31 30 wral 𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) )
69 68 29 30 wral 𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) )
70 69 28 27 wral 𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) )
71 70 26 27 wral 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) )
72 25 71 wa ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) )
73 72 23 22 wsbc [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) )
74 73 20 19 wsbc [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) )
75 74 18 17 wsbc [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) )
76 75 15 14 wsbc [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) )
77 76 12 11 wsbc [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) )
78 77 9 8 wsbc [ ( +g𝑔 ) / 𝑎 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) )
79 78 6 5 wsbc [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑎 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) )
80 79 1 2 crab { 𝑔 ∈ CMnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑎 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) ) }
81 0 80 wceq SLMod = { 𝑔 ∈ CMnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑎 ] [ ( ·𝑠𝑔 ) / 𝑠 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ] ( 𝑓 ∈ SRing ∧ ∀ 𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r𝑓 ) 𝑠 𝑤 ) = 𝑤 ∧ ( ( 0g𝑓 ) 𝑠 𝑤 ) = ( 0g𝑔 ) ) ) ) }