| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cspc |
⊢ Lambda |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
chba |
⊢ ℋ |
| 3 |
|
cmap |
⊢ ↑m |
| 4 |
2 2 3
|
co |
⊢ ( ℋ ↑m ℋ ) |
| 5 |
|
vx |
⊢ 𝑥 |
| 6 |
|
cc |
⊢ ℂ |
| 7 |
1
|
cv |
⊢ 𝑡 |
| 8 |
|
chod |
⊢ −op |
| 9 |
5
|
cv |
⊢ 𝑥 |
| 10 |
|
chot |
⊢ ·op |
| 11 |
|
cid |
⊢ I |
| 12 |
11 2
|
cres |
⊢ ( I ↾ ℋ ) |
| 13 |
9 12 10
|
co |
⊢ ( 𝑥 ·op ( I ↾ ℋ ) ) |
| 14 |
7 13 8
|
co |
⊢ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) |
| 15 |
2 2 14
|
wf1 |
⊢ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ |
| 16 |
15
|
wn |
⊢ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ |
| 17 |
16 5 6
|
crab |
⊢ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } |
| 18 |
1 4 17
|
cmpt |
⊢ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |
| 19 |
0 18
|
wceq |
⊢ Lambda = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |