Metamath Proof Explorer


Definition df-spec

Description: Define the spectrum of an operator. Definition of spectrum in Halmos p. 50. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion df-spec Lambda = t x | ¬ t - op x · op I : 1-1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cspc class Lambda
1 vt setvar t
2 chba class
3 cmap class 𝑚
4 2 2 3 co class
5 vx setvar x
6 cc class
7 1 cv setvar t
8 chod class - op
9 5 cv setvar x
10 chot class · op
11 cid class I
12 11 2 cres class I
13 9 12 10 co class x · op I
14 7 13 8 co class t - op x · op I
15 2 2 14 wf1 wff t - op x · op I : 1-1
16 15 wn wff ¬ t - op x · op I : 1-1
17 16 5 6 crab class x | ¬ t - op x · op I : 1-1
18 1 4 17 cmpt class t x | ¬ t - op x · op I : 1-1
19 0 18 wceq wff Lambda = t x | ¬ t - op x · op I : 1-1