Metamath Proof Explorer


Definition df-succf

Description: Define the successor function. See brsuccf for its value. (Contributed by Scott Fenton, 14-Apr-2014)

Ref Expression
Assertion df-succf Succ = ( Cup ∘ ( I ⊗ Singleton ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csuccf Succ
1 ccup Cup
2 cid I
3 csingle Singleton
4 2 3 ctxp ( I ⊗ Singleton )
5 1 4 ccom ( Cup ∘ ( I ⊗ Singleton ) )
6 0 5 wceq Succ = ( Cup ∘ ( I ⊗ Singleton ) )