Metamath Proof Explorer
Description: Define the successor function. See brsuccf for its value. (Contributed by Scott Fenton, 14-Apr-2014)
|
|
Ref |
Expression |
|
Assertion |
df-succf |
⊢ Succ = ( Cup ∘ ( I ⊗ Singleton ) ) |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csuccf |
⊢ Succ |
| 1 |
|
ccup |
⊢ Cup |
| 2 |
|
cid |
⊢ I |
| 3 |
|
csingle |
⊢ Singleton |
| 4 |
2 3
|
ctxp |
⊢ ( I ⊗ Singleton ) |
| 5 |
1 4
|
ccom |
⊢ ( Cup ∘ ( I ⊗ Singleton ) ) |
| 6 |
0 5
|
wceq |
⊢ Succ = ( Cup ∘ ( I ⊗ Singleton ) ) |