Metamath Proof Explorer
Description: Define the successor function. See brsuccf for its value. (Contributed by Scott Fenton, 14-Apr-2014)
|
|
Ref |
Expression |
|
Assertion |
df-succf |
⊢ Succ = ( Cup ∘ ( I ⊗ Singleton ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
csuccf |
⊢ Succ |
1 |
|
ccup |
⊢ Cup |
2 |
|
cid |
⊢ I |
3 |
|
csingle |
⊢ Singleton |
4 |
2 3
|
ctxp |
⊢ ( I ⊗ Singleton ) |
5 |
1 4
|
ccom |
⊢ ( Cup ∘ ( I ⊗ Singleton ) ) |
6 |
0 5
|
wceq |
⊢ Succ = ( Cup ∘ ( I ⊗ Singleton ) ) |