| Step | Hyp | Ref | Expression | 
						
							| 0 |  | capply | ⊢ Apply | 
						
							| 1 |  | cbigcup | ⊢  Bigcup | 
						
							| 2 | 1 1 | ccom | ⊢ (  Bigcup   ∘   Bigcup  ) | 
						
							| 3 |  | cvv | ⊢ V | 
						
							| 4 | 3 3 | cxp | ⊢ ( V  ×  V ) | 
						
							| 5 |  | cep | ⊢  E | 
						
							| 6 | 3 5 | ctxp | ⊢ ( V  ⊗   E  ) | 
						
							| 7 |  | csingles | ⊢  Singletons | 
						
							| 8 | 5 7 | cres | ⊢ (  E   ↾   Singletons  ) | 
						
							| 9 | 8 3 | ctxp | ⊢ ( (  E   ↾   Singletons  )  ⊗  V ) | 
						
							| 10 | 6 9 | csymdif | ⊢ ( ( V  ⊗   E  )  △  ( (  E   ↾   Singletons  )  ⊗  V ) ) | 
						
							| 11 | 10 | crn | ⊢ ran  ( ( V  ⊗   E  )  △  ( (  E   ↾   Singletons  )  ⊗  V ) ) | 
						
							| 12 | 4 11 | cdif | ⊢ ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ↾   Singletons  )  ⊗  V ) ) ) | 
						
							| 13 |  | csingle | ⊢ Singleton | 
						
							| 14 |  | cimg | ⊢ Img | 
						
							| 15 | 13 14 | ccom | ⊢ ( Singleton  ∘  Img ) | 
						
							| 16 |  | cid | ⊢  I | 
						
							| 17 | 16 13 | cpprod | ⊢ pprod (  I  ,  Singleton ) | 
						
							| 18 | 15 17 | ccom | ⊢ ( ( Singleton  ∘  Img )  ∘  pprod (  I  ,  Singleton ) ) | 
						
							| 19 | 12 18 | ccom | ⊢ ( ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ↾   Singletons  )  ⊗  V ) ) )  ∘  ( ( Singleton  ∘  Img )  ∘  pprod (  I  ,  Singleton ) ) ) | 
						
							| 20 | 2 19 | ccom | ⊢ ( (  Bigcup   ∘   Bigcup  )  ∘  ( ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ↾   Singletons  )  ⊗  V ) ) )  ∘  ( ( Singleton  ∘  Img )  ∘  pprod (  I  ,  Singleton ) ) ) ) | 
						
							| 21 | 0 20 | wceq | ⊢ Apply  =  ( (  Bigcup   ∘   Bigcup  )  ∘  ( ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ↾   Singletons  )  ⊗  V ) ) )  ∘  ( ( Singleton  ∘  Img )  ∘  pprod (  I  ,  Singleton ) ) ) ) |