Step |
Hyp |
Ref |
Expression |
0 |
|
capply |
⊢ Apply |
1 |
|
cbigcup |
⊢ Bigcup |
2 |
1 1
|
ccom |
⊢ ( Bigcup ∘ Bigcup ) |
3 |
|
cvv |
⊢ V |
4 |
3 3
|
cxp |
⊢ ( V × V ) |
5 |
|
cep |
⊢ E |
6 |
3 5
|
ctxp |
⊢ ( V ⊗ E ) |
7 |
|
csingles |
⊢ Singletons |
8 |
5 7
|
cres |
⊢ ( E ↾ Singletons ) |
9 |
8 3
|
ctxp |
⊢ ( ( E ↾ Singletons ) ⊗ V ) |
10 |
6 9
|
csymdif |
⊢ ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) |
11 |
10
|
crn |
⊢ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) |
12 |
4 11
|
cdif |
⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) |
13 |
|
csingle |
⊢ Singleton |
14 |
|
cimg |
⊢ Img |
15 |
13 14
|
ccom |
⊢ ( Singleton ∘ Img ) |
16 |
|
cid |
⊢ I |
17 |
16 13
|
cpprod |
⊢ pprod ( I , Singleton ) |
18 |
15 17
|
ccom |
⊢ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) |
19 |
12 18
|
ccom |
⊢ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) |
20 |
2 19
|
ccom |
⊢ ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) |
21 |
0 20
|
wceq |
⊢ Apply = ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) |