Metamath Proof Explorer


Definition df-apply

Description: Define the application function. See brapply for its value. (Contributed by Scott Fenton, 12-Apr-2014)

Ref Expression
Assertion df-apply Apply = ( ( Bigcup Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 capply Apply
1 cbigcup Bigcup
2 1 1 ccom ( Bigcup Bigcup )
3 cvv V
4 3 3 cxp ( V × V )
5 cep E
6 3 5 ctxp ( V ⊗ E )
7 csingles Singletons
8 5 7 cres ( E ↾ Singletons )
9 8 3 ctxp ( ( E ↾ Singletons ) ⊗ V )
10 6 9 csymdif ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) )
11 10 crn ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) )
12 4 11 cdif ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) )
13 csingle Singleton
14 cimg Img
15 13 14 ccom ( Singleton ∘ Img )
16 cid I
17 16 13 cpprod pprod ( I , Singleton )
18 15 17 ccom ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) )
19 12 18 ccom ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) )
20 2 19 ccom ( ( Bigcup Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) )
21 0 20 wceq Apply = ( ( Bigcup Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) )