Step |
Hyp |
Ref |
Expression |
0 |
|
capply |
|- Apply |
1 |
|
cbigcup |
|- Bigcup |
2 |
1 1
|
ccom |
|- ( Bigcup o. Bigcup ) |
3 |
|
cvv |
|- _V |
4 |
3 3
|
cxp |
|- ( _V X. _V ) |
5 |
|
cep |
|- _E |
6 |
3 5
|
ctxp |
|- ( _V (x) _E ) |
7 |
|
csingles |
|- Singletons |
8 |
5 7
|
cres |
|- ( _E |` Singletons ) |
9 |
8 3
|
ctxp |
|- ( ( _E |` Singletons ) (x) _V ) |
10 |
6 9
|
csymdif |
|- ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) |
11 |
10
|
crn |
|- ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) |
12 |
4 11
|
cdif |
|- ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) |
13 |
|
csingle |
|- Singleton |
14 |
|
cimg |
|- Img |
15 |
13 14
|
ccom |
|- ( Singleton o. Img ) |
16 |
|
cid |
|- _I |
17 |
16 13
|
cpprod |
|- pprod ( _I , Singleton ) |
18 |
15 17
|
ccom |
|- ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) |
19 |
12 18
|
ccom |
|- ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) |
20 |
2 19
|
ccom |
|- ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) |
21 |
0 20
|
wceq |
|- Apply = ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) |