| Step | Hyp | Ref | Expression | 
						
							| 0 |  | capply |  |-  Apply | 
						
							| 1 |  | cbigcup |  |-  Bigcup | 
						
							| 2 | 1 1 | ccom |  |-  ( Bigcup o. Bigcup ) | 
						
							| 3 |  | cvv |  |-  _V | 
						
							| 4 | 3 3 | cxp |  |-  ( _V X. _V ) | 
						
							| 5 |  | cep |  |-  _E | 
						
							| 6 | 3 5 | ctxp |  |-  ( _V (x) _E ) | 
						
							| 7 |  | csingles |  |-  Singletons | 
						
							| 8 | 5 7 | cres |  |-  ( _E |` Singletons ) | 
						
							| 9 | 8 3 | ctxp |  |-  ( ( _E |` Singletons ) (x) _V ) | 
						
							| 10 | 6 9 | csymdif |  |-  ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) | 
						
							| 11 | 10 | crn |  |-  ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) | 
						
							| 12 | 4 11 | cdif |  |-  ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) | 
						
							| 13 |  | csingle |  |-  Singleton | 
						
							| 14 |  | cimg |  |-  Img | 
						
							| 15 | 13 14 | ccom |  |-  ( Singleton o. Img ) | 
						
							| 16 |  | cid |  |-  _I | 
						
							| 17 | 16 13 | cpprod |  |-  pprod ( _I , Singleton ) | 
						
							| 18 | 15 17 | ccom |  |-  ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) | 
						
							| 19 | 12 18 | ccom |  |-  ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) | 
						
							| 20 | 2 19 | ccom |  |-  ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) | 
						
							| 21 | 0 20 | wceq |  |-  Apply = ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) |