Metamath Proof Explorer


Definition df-funpart

Description: Define the functional part of a class F . This is the maximal part of F that is a function. See funpartfun and funpartfv for the meaning of this statement. (Contributed by Scott Fenton, 16-Apr-2014)

Ref Expression
Assertion df-funpart
|- Funpart F = ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF
 |-  F
1 0 cfunpart
 |-  Funpart F
2 0 cimage
 |-  Image F
3 csingle
 |-  Singleton
4 2 3 ccom
 |-  ( Image F o. Singleton )
5 cvv
 |-  _V
6 csingles
 |-  Singletons
7 5 6 cxp
 |-  ( _V X. Singletons )
8 4 7 cin
 |-  ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) )
9 8 cdm
 |-  dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) )
10 0 9 cres
 |-  ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) )
11 1 10 wceq
 |-  Funpart F = ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) )