Metamath Proof Explorer


Definition df-fullfun

Description: Define the full function over F . This is a function with domain _V that always agrees with F for its value. (Contributed by Scott Fenton, 17-Apr-2014)

Ref Expression
Assertion df-fullfun
|- FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF
 |-  F
1 0 cfullfn
 |-  FullFun F
2 0 cfunpart
 |-  Funpart F
3 cvv
 |-  _V
4 2 cdm
 |-  dom Funpart F
5 3 4 cdif
 |-  ( _V \ dom Funpart F )
6 c0
 |-  (/)
7 6 csn
 |-  { (/) }
8 5 7 cxp
 |-  ( ( _V \ dom Funpart F ) X. { (/) } )
9 2 8 cun
 |-  ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) )
10 1 9 wceq
 |-  FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) )