Description: Define the full function over F . This is a function with domain _V that always agrees with F for its value. (Contributed by Scott Fenton, 17-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-fullfun | |- FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cF | |- F |
|
1 | 0 | cfullfn | |- FullFun F |
2 | 0 | cfunpart | |- Funpart F |
3 | cvv | |- _V |
|
4 | 2 | cdm | |- dom Funpart F |
5 | 3 4 | cdif | |- ( _V \ dom Funpart F ) |
6 | c0 | |- (/) |
|
7 | 6 | csn | |- { (/) } |
8 | 5 7 | cxp | |- ( ( _V \ dom Funpart F ) X. { (/) } ) |
9 | 2 8 | cun | |- ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) |
10 | 1 9 | wceq | |- FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) |