Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
df-fullfun
Metamath Proof Explorer
Description: Define the full function over F . This is a function with domain
_V that always agrees with F for its value. (Contributed by Scott
Fenton , 17-Apr-2014)
Ref
Expression
Assertion
df-fullfun
⊢ FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cF
⊢ 𝐹
1
0
cfullfn
⊢ FullFun 𝐹
2
0
cfunpart
⊢ Funpart 𝐹
3
cvv
⊢ V
4
2
cdm
⊢ dom Funpart 𝐹
5
3 4
cdif
⊢ ( V ∖ dom Funpart 𝐹 )
6
c0
⊢ ∅
7
6
csn
⊢ { ∅ }
8
5 7
cxp
⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } )
9
2 8
cun
⊢ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) )
10
1 9
wceq
⊢ FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) )