Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Scott Fenton Quantifier-free definitions df-fullfun  
				
		 
		
			
		 
		Description:   Define the full function over F  .  This is a function with domain
     _V  that always agrees with F  for its value.  (Contributed by Scott
     Fenton , 17-Apr-2014) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-fullfun ⊢   FullFun 𝐹   =  ( Funpart 𝐹   ∪  ( ( V  ∖  dom  Funpart 𝐹  )  ×  { ∅ } ) )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cF ⊢  𝐹   
						
							1 
								0 
							 
							cfullfn ⊢  FullFun 𝐹   
						
							2 
								0 
							 
							cfunpart ⊢  Funpart 𝐹   
						
							3 
								
							 
							cvv ⊢  V  
						
							4 
								2 
							 
							cdm ⊢  dom  Funpart 𝐹   
						
							5 
								3  4 
							 
							cdif ⊢  ( V  ∖  dom  Funpart 𝐹  )  
						
							6 
								
							 
							c0 ⊢  ∅  
						
							7 
								6 
							 
							csn ⊢  { ∅ }  
						
							8 
								5  7 
							 
							cxp ⊢  ( ( V  ∖  dom  Funpart 𝐹  )  ×  { ∅ } )  
						
							9 
								2  8 
							 
							cun ⊢  ( Funpart 𝐹   ∪  ( ( V  ∖  dom  Funpart 𝐹  )  ×  { ∅ } ) )  
						
							10 
								1  9 
							 
							wceq ⊢  FullFun 𝐹   =  ( Funpart 𝐹   ∪  ( ( V  ∖  dom  Funpart 𝐹  )  ×  { ∅ } ) )