Metamath Proof Explorer


Definition df-fullfun

Description: Define the full function over F . This is a function with domain _V that always agrees with F for its value. (Contributed by Scott Fenton, 17-Apr-2014)

Ref Expression
Assertion df-fullfun FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF 𝐹
1 0 cfullfn FullFun 𝐹
2 0 cfunpart Funpart 𝐹
3 cvv V
4 2 cdm dom Funpart 𝐹
5 3 4 cdif ( V ∖ dom Funpart 𝐹 )
6 c0
7 6 csn { ∅ }
8 5 7 cxp ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } )
9 2 8 cun ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) )
10 1 9 wceq FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) )