Metamath Proof Explorer


Definition df-fullfun

Description: Define the full function over F . This is a function with domain _V that always agrees with F for its value. (Contributed by Scott Fenton, 17-Apr-2014)

Ref Expression
Assertion df-fullfun ⊒π–₯π—Žπ—…π—…π–₯π—Žπ—‡F=π–₯π—Žπ—‡π–―π–Ίπ—‹π—FβˆͺVβˆ–dom⁑π–₯π—Žπ—‡π–―π–Ίπ—‹π—FΓ—βˆ…

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF classF
1 0 cfullfn classπ–₯π—Žπ—…π—…π–₯π—Žπ—‡F
2 0 cfunpart classπ–₯π—Žπ—‡π–―π–Ίπ—‹π—F
3 cvv classV
4 2 cdm classdom⁑π–₯π—Žπ—‡π–―π–Ίπ—‹π—F
5 3 4 cdif classVβˆ–dom⁑π–₯π—Žπ—‡π–―π–Ίπ—‹π—F
6 c0 classβˆ…
7 6 csn classβˆ…
8 5 7 cxp classVβˆ–dom⁑π–₯π—Žπ—‡π–―π–Ίπ—‹π—FΓ—βˆ…
9 2 8 cun classπ–₯π—Žπ—‡π–―π–Ίπ—‹π—FβˆͺVβˆ–dom⁑π–₯π—Žπ—‡π–―π–Ίπ—‹π—FΓ—βˆ…
10 1 9 wceq wffπ–₯π—Žπ—…π—…π–₯π—Žπ—‡F=π–₯π—Žπ—‡π–―π–Ίπ—‹π—FβˆͺVβˆ–dom⁑π–₯π—Žπ—‡π–―π–Ίπ—‹π—FΓ—βˆ